高速撮像技術を併用したchemical shift-encoded MRIにおける脂肪含有率の精度評価
【目的】高速撮像技術を併用したchemical shift-encoded MRI(CSE-MRI)におけるproton density fat fraction(PDFF)の精度を,ファントムを用いて検証した.【方法】MR装置はProdiva 1.5T(Philips Healthcare,Best,the Netherlands),ファントムは300型PDFFファントム(Calimetrix,Madison,WI,USA)を使用した.高速撮像技術を併用しない撮像,位相エンコード方向のみにパラレルイメージング(SENSE)を併用した撮像(SENSE撮像),圧縮センシング(CS-SENSE)を...
Saved in:
Published in | 日本放射線技術学会雑誌 Vol. 81; no. 3; pp. 1 - 15 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | Japanese |
Published |
公益社団法人 日本放射線技術学会
2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0369-4305 1881-4883 |
DOI | 10.6009/jjrt.25-1464 |
Cover
Loading…
Abstract | 【目的】高速撮像技術を併用したchemical shift-encoded MRI(CSE-MRI)におけるproton density fat fraction(PDFF)の精度を,ファントムを用いて検証した.【方法】MR装置はProdiva 1.5T(Philips Healthcare,Best,the Netherlands),ファントムは300型PDFFファントム(Calimetrix,Madison,WI,USA)を使用した.高速撮像技術を併用しない撮像,位相エンコード方向のみにパラレルイメージング(SENSE)を併用した撮像(SENSE撮像),圧縮センシング(CS-SENSE)を併用した撮像(CS-SENSE撮像),および2方向にSENSEを併用した撮像(Dual-SENSE撮像)を行った.またreduction factorはSENSE撮像,CS-SENSE撮像ともに2.0,3.0,4.0,5.0,6.0,7.0,8.0を設定し,Dual-SENSE撮像は2方向それぞれに同じ値(1.5,2.0,3.0,4.0,5.0)を設定した.計20回の撮像を行った.各バイアルのPDFFのメーカ保証値に対する実測値の線形回帰分析およびBland–Altman分析を行った.【結果】線形回帰分析の結果,回帰直線の傾きは0.87~1.02,切片は0.06%~3.55%となった.Bland–Altman分析の結果,SENSE reduction factor 8.0およびDual-SENSE reduction factor 5.0において加算誤差を認めた.またSENSE reduction factor 3.0~8.0,CS-SENSE reduction factor 7.0~8.0,およびDual-SENSE reduction factor 2.0~5.0では,PDFF値0%~50%の範囲において一部のバイアルの誤差が±1.5%以上であった.【結語】CS-SENSE撮像のPDFFにおいて,reduction factor 6.0までは測定誤差1.5%以内の精度が得られた.SENSE撮像ではreduction factor 2.0まで,Dual-SENSE撮像ではreduction factor 1.5まで測定誤差1.5%以内の精度が得られた. |
---|---|
AbstractList | 【目的】高速撮像技術を併用したchemical shift-encoded MRI(CSE-MRI)におけるproton density fat fraction(PDFF)の精度を,ファントムを用いて検証した.【方法】MR装置はProdiva 1.5T(Philips Healthcare,Best,the Netherlands),ファントムは300型PDFFファントム(Calimetrix,Madison,WI,USA)を使用した.高速撮像技術を併用しない撮像,位相エンコード方向のみにパラレルイメージング(SENSE)を併用した撮像(SENSE撮像),圧縮センシング(CS-SENSE)を併用した撮像(CS-SENSE撮像),および2方向にSENSEを併用した撮像(Dual-SENSE撮像)を行った.またreduction factorはSENSE撮像,CS-SENSE撮像ともに2.0,3.0,4.0,5.0,6.0,7.0,8.0を設定し,Dual-SENSE撮像は2方向それぞれに同じ値(1.5,2.0,3.0,4.0,5.0)を設定した.計20回の撮像を行った.各バイアルのPDFFのメーカ保証値に対する実測値の線形回帰分析およびBland–Altman分析を行った.【結果】線形回帰分析の結果,回帰直線の傾きは0.87~1.02,切片は0.06%~3.55%となった.Bland–Altman分析の結果,SENSE reduction factor 8.0およびDual-SENSE reduction factor 5.0において加算誤差を認めた.またSENSE reduction factor 3.0~8.0,CS-SENSE reduction factor 7.0~8.0,およびDual-SENSE reduction factor 2.0~5.0では,PDFF値0%~50%の範囲において一部のバイアルの誤差が±1.5%以上であった.【結語】CS-SENSE撮像のPDFFにおいて,reduction factor 6.0までは測定誤差1.5%以内の精度が得られた.SENSE撮像ではreduction factor 2.0まで,Dual-SENSE撮像ではreduction factor 1.5まで測定誤差1.5%以内の精度が得られた. |
Author | 石田, 隆行 三阪, 知史 竹中, 智士 |
Author_xml | – sequence: 1 fullname: 竹中, 智士 organization: 近畿大学奈良病院放射線部 – sequence: 1 fullname: 石田, 隆行 organization: 大阪大学大学院医学系研究科保健学専攻 – sequence: 1 orcidid: 0000-0002-1847-4963 fullname: 三阪, 知史 organization: 大阪大学大学院医学系研究科保健学専攻 |
BookMark | eNo9kEtLw0AAhBepYK29-QP6B1J3s8lmc9Tio1ARRM9hu9nYhD4kycVbEwWxgo-q6EEovYha6EHwItg_s32k_8IWxcsMzAxz-JZBqt6oCwBWEcwTCM01z_PDvKorSCPaAkgjSpGiUYpTIA0xMRUNQ30JZIPALcPZfhZBLQ3EtPc0bXbG7f7o9HrcaibdOxm3h9-fk_tXGT3KqMMrouZyVs0FFdcJFVHnDVvYud39oox6MmrJ6FbGl8lZnMTvo5ve-PlicnUuo_7kYzD6ekneHoaD7gpYdFg1ENk_z4DDrc2Dwo5S2tsuFtZLioeoyhRhc9XhJsQ2RYZAKjV0aqqclYkNOdYIM02KNWiUCXewbnBuMFM4DBtEEKFDB2fAxu-vF4TsSFjHvltj_onF_NDlVWHNGVkUWXguqm7NWf2XvMJ8y2P4B2Qif44 |
ContentType | Journal Article |
Copyright | 2025 公益社団法人日本放射線技術学会 |
Copyright_xml | – notice: 2025 公益社団法人日本放射線技術学会 |
DOI | 10.6009/jjrt.25-1464 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1881-4883 |
EndPage | 15 |
ExternalDocumentID | article_jjrt_81_3_81_25_1464_article_char_ja |
GrantInformation | JSPS |
GroupedDBID | .LE 2WC ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS KQ8 OK1 RJT |
ID | FETCH-LOGICAL-j182a-edc2fc903d817e12875892cab6d0c346a9983407b6cf357cc7a9efa376e6e50f3 |
ISSN | 0369-4305 |
IngestDate | Wed Sep 03 06:30:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Language | Japanese |
License | https://creativecommons.org/licenses/by-nc-sa/4.0/deed.ja |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j182a-edc2fc903d817e12875892cab6d0c346a9983407b6cf357cc7a9efa376e6e50f3 |
ORCID | 0000-0002-1847-4963 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jjrt/81/3/81_25-1464/_article/-char/ja |
PageCount | 15 |
ParticipantIDs | jstage_primary_article_jjrt_81_3_81_25_1464_article_char_ja |
PublicationCentury | 2000 |
PublicationDate | 2025 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 2025 |
PublicationDecade | 2020 |
PublicationTitle | 日本放射線技術学会雑誌 |
PublicationTitleAlternate | 日放技学誌 |
PublicationYear | 2025 |
Publisher | 公益社団法人 日本放射線技術学会 |
Publisher_xml | – name: 公益社団法人 日本放射線技術学会 |
References | 27) Kim HJ, Cho HJ, Kim B, et al. Accuracy and precision of proton density fat fraction measurement across field strengths and scan intervals: a phantom and human study. J Magn Reson Imaging 2019; 50: 305–314. 11) Kim M, Kang B-K, Jun DW. Comparison of conventional sonographic signs and magnetic resonance imaging proton density fat fraction for assessment of hepatic steatosis. Sci Rep 2018; 8: 7759. 13) Covarrubias Y, Fowler KJ, Mamidipalli A, et al. Pilot study on longitudinal change in pancreatic proton density fat fraction during a weight-loss surgery program in adults with obesity. J Magn Reson Imaging 2019; 50: 1092–1102. 20) Lustig M, Donoho DL, Santos JM, et al. Compressed sensing MRI. IEEE Signal Process Mag 2008; 25: 72–82. 10) Loomba R, Schork N, Chen C-H, et al. Heritability of hepatic fibrosis and steatosis based on a prospective twin study. Gastroenterology 2015; 149: 1784–1793. 23) Özcan M, Seven S. Physical and chemical analysis and fatty acid composition of peanut, peanut oil and peanut butter from ÇOM and NC-7 cultivars. Grasas Aceites 2003; 54: 12–18. 24) Yu H, Shimakawa A, McKenzie CA, et al. Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn Reson Med 2008; 60: 1122–1134. 28) Mann LW, Higgins DM, Peters CN, et al. Accelerating MR imaging liver steatosis measurement using combined compressed sensing and parallel imaging: a quantitative evaluation. Radiology 2016; 278: 247–256. 6) Idilman IS, Aniktar H, Idilman R, et al. Hepatic steatosis: quantification by proton density fat fraction with MR imaging versus liver biopsy. Radiology 2013; 267: 767–775. 2) Glover GH. Multipoint Dixon technique for water and fat proton and susceptibility imaging. J Magn Reson Imaging 1991; 1: 521–530. 18) Griswold MA, Jakob PM, Heidemann RM, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002; 47: 1202–1210. 29) Lohöfer FK, Kaissis GA, Müller-Leisse C, et al. Acceleration of chemical shift encoding-based water fat MRI for liver proton density fat fraction and T2 mapping using compressed sensing. PLoS One 2019; 14: e0224988. 4) Yu H, McKenzie CA, Shimakawa A, et al. Multiecho reconstruction for simultaneous water-fat decomposition and T2* estimation. J Magn Reson Imaging 2007; 26: 1153–1161. 21) 奥秋知幸.基礎講座—画像再構成の基礎と臨床応用— 6. 臨床応用(4)–MRIの画像再構成(パラレルイメージング法)–.日放技学誌2014; 70: 1188-1197. 14) Guo Y, Chen Y, Zhang X, et al. Magnetic susceptibility and fat content in the lumbar spine of postmenopausal women with varying bone mineral density. J Magn Reson Imaging 2019; 49: 1020–1028. 17) Pruessmann KP, Weiger M, Scheidegger MB, et al. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999; 42: 952–962. 12) Loomba R, Kayali Z, Noureddin M, et al. GS-0976 reduces hepatic steatosis and fibrosis markers in patients with nonalcoholic fatty liver disease. Gastroenterology 2018; 155: 1463–1473.e6. 15) Zhao Y, Huang M, Ding J, et al. Prediction of abnormal bone density and osteoporosis from lumbar spine MR using modified Dixon Quant in 257 subjects with quantitative computed tomography as reference. J Magn Reson Imaging 2019; 49: 390–399. 9) Middleton MS, Heba ER, Hooker CA, et al. Agreement between magnetic resonance imaging proton density fat fraction measurements and pathologist-assigned steatosis grades of liver biopsies from adults with nonalcoholic steatohepatitis. Gastroenterology 2017; 153: 753–761. 1) Dixon WT. Simple proton spectroscopic imaging. Radiology 1984; 153: 189–194. 5) Kukuk GM, Hittatiya K, Sprinkart AM, et al. Comparison between modified Dixon MRI techniques, MR spectroscopic relaxometry, and different histologic quantification methods in the assessment of hepatic steatosis. Eur Radiol 2015; 25: 2869–2879. 7) Tang A, Tan J, Sun M, et al. Nonalcoholic fatty liver disease: MR imaging of liver proton density fat fraction to assess hepatic steatosis. Radiology 2013; 267: 422–431. 8) Noureddin M, Lam J, Peterson MR, et al. Utility of magnetic resonance imaging versus histology for quantifying changes in liver fat in nonalcoholic fatty liver disease trials. Hepatology 2013; 58: 1930–1940. 3) Glover GH, Schneider E. Three-point Dixon technique for true water/fat decomposition with B0 inhomogeneity correction. Magn Reson Med 1991; 18: 371–383. 16) Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 1997; 38: 591–603. 22) 玉田大輝.圧縮センシングのMRIへの実装.日磁気共鳴医会誌2018; 38: 76–86. 19) Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 2007; 58: 1182–1195. 26) Jang JK, Lee SS, Kim B, et al. Agreement and reproducibility of proton density fat fraction measurements using commercial MR sequences across different platforms: a multivendor, multi-institutional phantom experiment. Invest Radiol 2019; 54: 517–523. 25) Hu HH, Yokoo T, Bashir MR, et al. Linearity and bias of proton density fat fraction as a quantitative imaging biomarker: a multicenter, multiplatform, multivendor phantom study. Radiology 2021; 298: 640–651. |
References_xml | – reference: 20) Lustig M, Donoho DL, Santos JM, et al. Compressed sensing MRI. IEEE Signal Process Mag 2008; 25: 72–82. – reference: 3) Glover GH, Schneider E. Three-point Dixon technique for true water/fat decomposition with B0 inhomogeneity correction. Magn Reson Med 1991; 18: 371–383. – reference: 23) Özcan M, Seven S. Physical and chemical analysis and fatty acid composition of peanut, peanut oil and peanut butter from ÇOM and NC-7 cultivars. Grasas Aceites 2003; 54: 12–18. – reference: 8) Noureddin M, Lam J, Peterson MR, et al. Utility of magnetic resonance imaging versus histology for quantifying changes in liver fat in nonalcoholic fatty liver disease trials. Hepatology 2013; 58: 1930–1940. – reference: 26) Jang JK, Lee SS, Kim B, et al. Agreement and reproducibility of proton density fat fraction measurements using commercial MR sequences across different platforms: a multivendor, multi-institutional phantom experiment. Invest Radiol 2019; 54: 517–523. – reference: 2) Glover GH. Multipoint Dixon technique for water and fat proton and susceptibility imaging. J Magn Reson Imaging 1991; 1: 521–530. – reference: 9) Middleton MS, Heba ER, Hooker CA, et al. Agreement between magnetic resonance imaging proton density fat fraction measurements and pathologist-assigned steatosis grades of liver biopsies from adults with nonalcoholic steatohepatitis. Gastroenterology 2017; 153: 753–761. – reference: 13) Covarrubias Y, Fowler KJ, Mamidipalli A, et al. Pilot study on longitudinal change in pancreatic proton density fat fraction during a weight-loss surgery program in adults with obesity. J Magn Reson Imaging 2019; 50: 1092–1102. – reference: 7) Tang A, Tan J, Sun M, et al. Nonalcoholic fatty liver disease: MR imaging of liver proton density fat fraction to assess hepatic steatosis. Radiology 2013; 267: 422–431. – reference: 29) Lohöfer FK, Kaissis GA, Müller-Leisse C, et al. Acceleration of chemical shift encoding-based water fat MRI for liver proton density fat fraction and T2 mapping using compressed sensing. PLoS One 2019; 14: e0224988. – reference: 18) Griswold MA, Jakob PM, Heidemann RM, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002; 47: 1202–1210. – reference: 24) Yu H, Shimakawa A, McKenzie CA, et al. Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn Reson Med 2008; 60: 1122–1134. – reference: 27) Kim HJ, Cho HJ, Kim B, et al. Accuracy and precision of proton density fat fraction measurement across field strengths and scan intervals: a phantom and human study. J Magn Reson Imaging 2019; 50: 305–314. – reference: 14) Guo Y, Chen Y, Zhang X, et al. Magnetic susceptibility and fat content in the lumbar spine of postmenopausal women with varying bone mineral density. J Magn Reson Imaging 2019; 49: 1020–1028. – reference: 22) 玉田大輝.圧縮センシングのMRIへの実装.日磁気共鳴医会誌2018; 38: 76–86. – reference: 25) Hu HH, Yokoo T, Bashir MR, et al. Linearity and bias of proton density fat fraction as a quantitative imaging biomarker: a multicenter, multiplatform, multivendor phantom study. Radiology 2021; 298: 640–651. – reference: 1) Dixon WT. Simple proton spectroscopic imaging. Radiology 1984; 153: 189–194. – reference: 4) Yu H, McKenzie CA, Shimakawa A, et al. Multiecho reconstruction for simultaneous water-fat decomposition and T2* estimation. J Magn Reson Imaging 2007; 26: 1153–1161. – reference: 28) Mann LW, Higgins DM, Peters CN, et al. Accelerating MR imaging liver steatosis measurement using combined compressed sensing and parallel imaging: a quantitative evaluation. Radiology 2016; 278: 247–256. – reference: 19) Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 2007; 58: 1182–1195. – reference: 11) Kim M, Kang B-K, Jun DW. Comparison of conventional sonographic signs and magnetic resonance imaging proton density fat fraction for assessment of hepatic steatosis. Sci Rep 2018; 8: 7759. – reference: 16) Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 1997; 38: 591–603. – reference: 21) 奥秋知幸.基礎講座—画像再構成の基礎と臨床応用— 6. 臨床応用(4)–MRIの画像再構成(パラレルイメージング法)–.日放技学誌2014; 70: 1188-1197. – reference: 6) Idilman IS, Aniktar H, Idilman R, et al. Hepatic steatosis: quantification by proton density fat fraction with MR imaging versus liver biopsy. Radiology 2013; 267: 767–775. – reference: 17) Pruessmann KP, Weiger M, Scheidegger MB, et al. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999; 42: 952–962. – reference: 10) Loomba R, Schork N, Chen C-H, et al. Heritability of hepatic fibrosis and steatosis based on a prospective twin study. Gastroenterology 2015; 149: 1784–1793. – reference: 12) Loomba R, Kayali Z, Noureddin M, et al. GS-0976 reduces hepatic steatosis and fibrosis markers in patients with nonalcoholic fatty liver disease. Gastroenterology 2018; 155: 1463–1473.e6. – reference: 15) Zhao Y, Huang M, Ding J, et al. Prediction of abnormal bone density and osteoporosis from lumbar spine MR using modified Dixon Quant in 257 subjects with quantitative computed tomography as reference. J Magn Reson Imaging 2019; 49: 390–399. – reference: 5) Kukuk GM, Hittatiya K, Sprinkart AM, et al. Comparison between modified Dixon MRI techniques, MR spectroscopic relaxometry, and different histologic quantification methods in the assessment of hepatic steatosis. Eur Radiol 2015; 25: 2869–2879. |
SSID | ssib000936904 ssib002223925 ssj0055458 ssib005879721 ssib031740840 ssib000959831 ssib000753122 ssib008799587 ssib002484555 ssib023160873 |
Score | 2.4042513 |
Snippet | 【目的】高速撮像技術を併用したchemical shift-encoded MRI(CSE-MRI)におけるproton density fat fraction(PDFF)の精度を,ファントムを用いて検証した.【方法】MR装置はProdiva 1.5T(Philips Healthcare,Best,the... |
SourceID | jstage |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | chemical shift-encoded MRI compressed sensing parallel imaging proton density fat fraction |
Title | 高速撮像技術を併用したchemical shift-encoded MRIにおける脂肪含有率の精度評価 |
URI | https://www.jstage.jst.go.jp/article/jjrt/81/3/81_25-1464/_article/-char/ja |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 日本放射線技術学会雑誌, 2025, Vol.81(3), pp.1-15 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9RAFA-lgngRP_GbPTggSDTJzCQzeEq2KVWpoLTQW8jmA91Dlbq9eOqugljBj6roQSi9iFroQfAi2H8m3Xb7X_jeJNlOpQerwhKGmTfv_ea9zMyb7Mwbw7jIOY2zlOJWnVSaLM5bZsuKXTPmFo15mjOh4hZM3nInptmNGT4zMnpJ27U032ldSR7tea7kb6wKeWBXPCW7D8sOmUIGpMG-8AQLw_OPbExCSfyASIEJ3LIwTkKXSIf4IQk5EZQIlSN8LA0F8W0iKQkh30GykJFgjASchB6RjPhCFQGNVyfGkzqgwMO79_KOiWEvU_BRJ-9cr0hAfpkAIVUlu5IgApQpGKYxAbh8xCUtVQuQNomQKFyERNQyEbtHAocEqhGBT3xXYZdEcgU5hHboTrVi5RGfVzz9pkqwmoOFGJAntNLfSx-c-GNKClRpKhqQFaiGCMQshp-SkQ1gD6SiFVgP3lElTiJUZEWBQqcHqwS0UjFgUfQSpQi3wqDzV2xRKxLtCsIVveKCDeRo0sDRP9aUR7pVx1LlXCnAwxagTQBwrQnIAXQAFvBUuvThd_m_K1CbXqgLnZNaJcasnP6EsE0Y0qk-P5ZX6lTjANUmO1vzmsozub_Px-BNYzjbdnsOL6M3YVZmO37HcDdo1X8iJIuEHVF8OBxXpSyqC_EQYtSGldABBxaEeEnLzdtCd3yprQeixHsq9ahDkkuh_d-NXrF0dgX2Y1w_oS08qQcOFBg3cWchA4siF_KGMxs44cxSUZNKH5Dj39HlLolSx-WRG1THVV0Z4Pa2YRFYbyBVPu3UEeNwtRht-GXjjxoj7fiYcXCy2m5z3Mi2Vz9sLyxvLq31H7_cXFwYrLwpeksbP79vvf1cdN8X3eV6eGjsGh4aMDwU3dWiu1h0Xxe954MnvUHva__V6ubHZ1svnhbdta1v6_0fnwZf3m2sr5wwpsfDqeaEWd3LYrZt4cRmliZOnkgY3YXtZeDgelxIJ4lbbmollLmxBF0zy2u5SU65lyReLLM8BlcmczNu5fSkMTp7fzY7ZTTwgHIuUXcyY6DXOLNZnidM2HmWsyw9bVwrFRQ9KIPvRPt5Wc78U-2zxiHswuX31nPGaGduPjsPK5BO64J6-X4BsBrz9Q |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%AB%98%E9%80%9F%E6%92%AE%E5%83%8F%E6%8A%80%E8%A1%93%E3%82%92%E4%BD%B5%E7%94%A8%E3%81%97%E3%81%9Fchemical+shift-encoded+MRI%E3%81%AB%E3%81%8A%E3%81%91%E3%82%8B%E8%84%82%E8%82%AA%E5%90%AB%E6%9C%89%E7%8E%87%E3%81%AE%E7%B2%BE%E5%BA%A6%E8%A9%95%E4%BE%A1&rft.jtitle=%E6%97%A5%E6%9C%AC%E6%94%BE%E5%B0%84%E7%B7%9A%E6%8A%80%E8%A1%93%E5%AD%A6%E4%BC%9A%E9%9B%91%E8%AA%8C&rft.au=%E7%AB%B9%E4%B8%AD%2C+%E6%99%BA%E5%A3%AB&rft.au=%E7%9F%B3%E7%94%B0%2C+%E9%9A%86%E8%A1%8C&rft.au=%E4%B8%89%E9%98%AA%2C+%E7%9F%A5%E5%8F%B2&rft.date=2025&rft.pub=%E5%85%AC%E7%9B%8A%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E6%97%A5%E6%9C%AC%E6%94%BE%E5%B0%84%E7%B7%9A%E6%8A%80%E8%A1%93%E5%AD%A6%E4%BC%9A&rft.issn=0369-4305&rft.eissn=1881-4883&rft.volume=81&rft.issue=3&rft.spage=1&rft.epage=15&rft_id=info:doi/10.6009%2Fjjrt.25-1464&rft.externalDocID=article_jjrt_81_3_81_25_1464_article_char_ja |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0369-4305&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0369-4305&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0369-4305&client=summon |