深層学習による河川空間内の迷惑・不法行為検知に関する実証的研究

河川空間は,自然の豊かさや水文化・水辺景観を享受できる貴重なオープンスペースである.一方で,親しみのある空間であるがゆえに,ごみの不法投棄,河道内の車両走行などの迷惑・不法行為が多発し,現状復旧や注意喚起などの業務が河川管理上の負担となっている.そこで本研究では,河川管理の高度化・省力化を目的とし,AI技術の一種である深層学習(Deep Learning)を活用した迷惑・不法行為の検知技術を開発している.本稿では,淀川水系で迷惑・不法行為が多発している4か所を対象に,深層学習モデルの畳込みニューラルネットワーク(Convolutional Neural Network)による迷惑・不法行為検知...

Full description

Saved in:
Bibliographic Details
Published inAI・データサイエンス論文集 Vol. 4; no. 3; pp. 163 - 169
Main Authors 山脇, 正嗣, 漆谷, 晃樹, 中田, 隆史, 法橋, 広歩, 田中, 優太, 吉井, 貴弘, 村上, 紘平
Format Journal Article
LanguageJapanese
Published 公益社団法人 土木学会 2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:河川空間は,自然の豊かさや水文化・水辺景観を享受できる貴重なオープンスペースである.一方で,親しみのある空間であるがゆえに,ごみの不法投棄,河道内の車両走行などの迷惑・不法行為が多発し,現状復旧や注意喚起などの業務が河川管理上の負担となっている.そこで本研究では,河川管理の高度化・省力化を目的とし,AI技術の一種である深層学習(Deep Learning)を活用した迷惑・不法行為の検知技術を開発している.本稿では,淀川水系で迷惑・不法行為が多発している4か所を対象に,深層学習モデルの畳込みニューラルネットワーク(Convolutional Neural Network)による迷惑・不法行為検知モデルと,それを実装したカメラ映像解析・警告発報システムによる実証実験を実施した.その結果,実際の行為を高精度に検知し,検知結果に基づく警告発報が行為の減少に貢献する可能性を示した.
ISSN:2435-9262
DOI:10.11532/jsceiii.4.3_163