炎症性腸疾患の診断と治療におけるAIの現状

人工知能(AI)を用いた技術が,炎症性腸疾患(IBD)の診療において重要な役割を果たすことが期待されている.AIは特に内視鏡分野に応用されており,IBDの病態把握を向上させる報告がされている.これらのAIによる内視鏡診断技術は,診断の精度向上,内視鏡画像解釈のばらつきの軽減,そして臨床医の意思決定プロセスの支援を目的としている.AIを活用することで,医療提供者はより個別化された効果的な治療を提供する可能性が高まり,最終的にはIBD診療における患者の治療結果を改善させることが期待されている....

Full description

Saved in:
Bibliographic Details
Published in昭和医科大学雑誌 Vol. 85; no. 3; pp. 193 - 198
Main Authors 小形, 典之, 林, 武雅, 若村, 邦彦, 三澤, 将史, 工藤, 進英, 一政, 克朗, 前田, 康晴, 馬場, 俊之
Format Journal Article
LanguageJapanese
Published 昭和医科大学学士会 2025
Subjects
Online AccessGet full text
ISSN2759-8144
2759-8152
DOI10.14930/jsmu.85.3_193

Cover

Abstract 人工知能(AI)を用いた技術が,炎症性腸疾患(IBD)の診療において重要な役割を果たすことが期待されている.AIは特に内視鏡分野に応用されており,IBDの病態把握を向上させる報告がされている.これらのAIによる内視鏡診断技術は,診断の精度向上,内視鏡画像解釈のばらつきの軽減,そして臨床医の意思決定プロセスの支援を目的としている.AIを活用することで,医療提供者はより個別化された効果的な治療を提供する可能性が高まり,最終的にはIBD診療における患者の治療結果を改善させることが期待されている.
AbstractList 人工知能(AI)を用いた技術が,炎症性腸疾患(IBD)の診療において重要な役割を果たすことが期待されている.AIは特に内視鏡分野に応用されており,IBDの病態把握を向上させる報告がされている.これらのAIによる内視鏡診断技術は,診断の精度向上,内視鏡画像解釈のばらつきの軽減,そして臨床医の意思決定プロセスの支援を目的としている.AIを活用することで,医療提供者はより個別化された効果的な治療を提供する可能性が高まり,最終的にはIBD診療における患者の治療結果を改善させることが期待されている.
Author 工藤, 進英
一政, 克朗
小形, 典之
馬場, 俊之
若村, 邦彦
三澤, 将史
林, 武雅
前田, 康晴
Author_xml – sequence: 1
  fullname: 小形, 典之
  organization: 昭和医科大学横浜市北部病院消化器センター
– sequence: 1
  fullname: 林, 武雅
  organization: 昭和医科大学横浜市北部病院消化器センター
– sequence: 1
  fullname: 若村, 邦彦
  organization: 昭和医科大学横浜市北部病院消化器センター
– sequence: 1
  fullname: 三澤, 将史
  organization: 昭和医科大学横浜市北部病院消化器センター
– sequence: 1
  fullname: 工藤, 進英
  organization: 昭和医科大学横浜市北部病院消化器センター
– sequence: 1
  fullname: 一政, 克朗
  organization: 昭和医科大学横浜市北部病院消化器センター
– sequence: 1
  fullname: 前田, 康晴
  organization: 昭和医科大学横浜市北部病院消化器センター
– sequence: 1
  fullname: 馬場, 俊之
  organization: 昭和医科大学横浜市北部病院消化器センター
BookMark eNo9j81Kw0AcxBepYK29-haJ-2k2CEIpfhQKXvS8_JNsNKGtktSDNxMQoQXFS8WzBwuiBw8iCn2ZQLaPYYpSGH4zMDAw66g2OB9ohDYJtgl3Gd6K0_6lLYXNFHHZCqpTR7iWJILWlpnzNdRM08jDQjqcuy6uox2T35nH2_L6ZX7zZSazMn8usvf59LucvBXZtPz4MU95kb0W2ajIHop83OpUvbmfmdHnBloNoZfq5r830Mn-3nH70OoeHXTara4VE0eCRQmTWm9XwlgI0IIwzgMqiKMDwNQB7njc1dyXjID0wfdCGgQVIQw09YA10O7fbpwO4VSriyTqQ3KlIBlGfk-rxXUlhWILVO-XhX8GiYqB_QKs_Wrp
ContentType Journal Article
Copyright 2025 昭和医科大学学士会
Copyright_xml – notice: 2025 昭和医科大学学士会
DOI 10.14930/jsmu.85.3_193
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2759-8152
EndPage 198
ExternalDocumentID article_jsmu_85_3_85_193_article_char_ja
GroupedDBID M~E
ID FETCH-LOGICAL-j178a-2138ee6ee60055ae51344d2517eda027a47b49e4c831a8cacbf2ddcbfafde2ba3
ISSN 2759-8144
IngestDate Wed Sep 03 06:30:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 3
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j178a-2138ee6ee60055ae51344d2517eda027a47b49e4c831a8cacbf2ddcbfafde2ba3
OpenAccessLink https://www.jstage.jst.go.jp/article/jsmu/85/3/85_193/_article/-char/ja
PageCount 6
ParticipantIDs jstage_primary_article_jsmu_85_3_85_193_article_char_ja
PublicationCentury 2000
PublicationDate 2025
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025
PublicationDecade 2020
PublicationTitle 昭和医科大学雑誌
PublicationTitleAlternate 昭和医大誌
PublicationYear 2025
Publisher 昭和医科大学学士会
Publisher_xml – name: 昭和医科大学学士会
References 3) Schroeder KW, Tremaine WJ, Ilstrup DM. Coated oral 5-aminosalicylic acid therapy for mildly to moderately active ulcerative colitis. a randomized study. N Engl J Med. 1987;317:1625-1629.
5) Travis SP, Schnell D, Krzeski P, et al. Reliability and initial validation of the ulcerative colitis endoscopic index of severity. Gastroenterology. 2013;145:987-995.
8) Kuroki T, Maeda Y, Kudo SE, et al. A novel artificial intelligence-assisted “vascular-healing” diagnosis for prediction of future clinical relapse in patients with ulcerative colitis: a prospective cohort study (with video). Gastrointest Endosc. 2024;100:97-108.
9) Takenaka K. Ohtsuka K, Fujii T, et al. Development and validation of a deep neural network for accurate evaluation of endoscopic images from patients with ulcerative colitis. Gastroenterology. 2020;158:2150-2157.
15) Tsai L, Ma C, Dulai PS, et al. Contemporary risk of surgery in patients with ulcerative colitis and Crohn’s disease: a meta‒analysis of population‒based cohorts. Clin Gastroenterol Hepatol. 2021;19:2031-2045. e11.
17) Waljee AK, Wallace BI, Cohen‒Mekelburg S, et al. Development and validation of machine learning models in prediction of remission in patients with moderate to severe Crohn disease. JAMA Network Open. 2019;2:e193721.
10) Takenaka K, Fujii T, Kawamoto A, et al. Deep neural network for video colonoscopy of ulcerative colitis: a cross-sectional study. Lancet Gastroenterol Hepatol. 2022;7:230-237.
13) Bossuyt P, Nakase H, Vermeire S, et al. Automatic computer-aided determination of endoscopic and histological inflammation in patients with mild to moderate ulcerative colitis based on red density. Gut. 2020;69:1778-1786.
6) Maeda Y, Kudo SE, Mori Y, et al. Fully automated diagnostic system with artificial intelligence using endocytoscopy to identify the presence of histologic inflammation associated with ulcerative colitis (with video). Gastrointest Endosc. 2019;89:408-415.
7) Maeda Y, Kudo SE, Ogata N, et al. Evaluation in real-time use of artificial intelligence during colonoscopy to predict relapse of ulcerative colitis: a prospective study. Gastrointest Endosc. 2022;95:747-756. e2.
12) Honzawa Y, Matsuura M, Higuchi H, et al. A novel endoscopic imaging system for quantitative evaluation of colonic mucosal inflammation in patients with quiescent ulcerative colitis. Endosc lnt Open. 2020;8:E41-E49.
18) Miyoshi J, Maeda T, Matsuoka K, et al. Machine learning using clinical data at baseline predicts the efficacy of vedolizumab at week 22 in patients with ulcerative colitis. Sci Rep. 2021;11:16440.
4) Travis SP, Schnell D, Krzeski P, et al. Developing an instrument to assess the endoscopic severity of ulcerative colitis: the ulcerative colitis endoscopic index of severity (UCEIS). Gut. 2012;61:535-542.
11) Ogata N, Maeda Y, Misawa M, et al. Artificial intelligence-assisted video colonoscopy for disease monitoring of ulcerative colitis: a prospective study. J Crohns Colitis. 2025;19:jjae080.
1) Neurath MF, Travis SP. Mucosal healing in inflammatory bowel diseases: a systematic review. Gut. 2012;61:1619-1635.
14) Takabayashi K, Kobayashi T, Matsuoka K, et al. Artificial intelligence quantifying endoscopic severity of ulcerative colitis in gradation scale. Dig Endosc. 2024;36:582-590.
16) 久松理一,平井郁仁,芦塚伸也,ほか.潰瘍性大腸炎・クローン病診断基準・治療指針.厚生労働科学研究費補助金 難治性疾患政策研究事業「難治性炎症性腸管障害に関する調査研究」(久松班)令和5年度分担研究報告書.令和5年度改訂版.令和6年3月31日
2) Turner D, Ricciuto A, Lewis A, et al. STRIDE-Ⅱ: an update on the selecting therapeutic targets in inflammatory bowel disease (STRIDE) initiative of the international organization for the study of IBD (IOIBD): determining therapeutic goals for treat-to-target strategies in IBD. Gastroenterology. 2021;160:1570-1583.
References_xml – reference: 2) Turner D, Ricciuto A, Lewis A, et al. STRIDE-Ⅱ: an update on the selecting therapeutic targets in inflammatory bowel disease (STRIDE) initiative of the international organization for the study of IBD (IOIBD): determining therapeutic goals for treat-to-target strategies in IBD. Gastroenterology. 2021;160:1570-1583.
– reference: 9) Takenaka K. Ohtsuka K, Fujii T, et al. Development and validation of a deep neural network for accurate evaluation of endoscopic images from patients with ulcerative colitis. Gastroenterology. 2020;158:2150-2157.
– reference: 4) Travis SP, Schnell D, Krzeski P, et al. Developing an instrument to assess the endoscopic severity of ulcerative colitis: the ulcerative colitis endoscopic index of severity (UCEIS). Gut. 2012;61:535-542.
– reference: 15) Tsai L, Ma C, Dulai PS, et al. Contemporary risk of surgery in patients with ulcerative colitis and Crohn’s disease: a meta‒analysis of population‒based cohorts. Clin Gastroenterol Hepatol. 2021;19:2031-2045. e11.
– reference: 6) Maeda Y, Kudo SE, Mori Y, et al. Fully automated diagnostic system with artificial intelligence using endocytoscopy to identify the presence of histologic inflammation associated with ulcerative colitis (with video). Gastrointest Endosc. 2019;89:408-415.
– reference: 17) Waljee AK, Wallace BI, Cohen‒Mekelburg S, et al. Development and validation of machine learning models in prediction of remission in patients with moderate to severe Crohn disease. JAMA Network Open. 2019;2:e193721.
– reference: 14) Takabayashi K, Kobayashi T, Matsuoka K, et al. Artificial intelligence quantifying endoscopic severity of ulcerative colitis in gradation scale. Dig Endosc. 2024;36:582-590.
– reference: 7) Maeda Y, Kudo SE, Ogata N, et al. Evaluation in real-time use of artificial intelligence during colonoscopy to predict relapse of ulcerative colitis: a prospective study. Gastrointest Endosc. 2022;95:747-756. e2.
– reference: 16) 久松理一,平井郁仁,芦塚伸也,ほか.潰瘍性大腸炎・クローン病診断基準・治療指針.厚生労働科学研究費補助金 難治性疾患政策研究事業「難治性炎症性腸管障害に関する調査研究」(久松班)令和5年度分担研究報告書.令和5年度改訂版.令和6年3月31日.
– reference: 11) Ogata N, Maeda Y, Misawa M, et al. Artificial intelligence-assisted video colonoscopy for disease monitoring of ulcerative colitis: a prospective study. J Crohns Colitis. 2025;19:jjae080.
– reference: 1) Neurath MF, Travis SP. Mucosal healing in inflammatory bowel diseases: a systematic review. Gut. 2012;61:1619-1635.
– reference: 18) Miyoshi J, Maeda T, Matsuoka K, et al. Machine learning using clinical data at baseline predicts the efficacy of vedolizumab at week 22 in patients with ulcerative colitis. Sci Rep. 2021;11:16440.
– reference: 5) Travis SP, Schnell D, Krzeski P, et al. Reliability and initial validation of the ulcerative colitis endoscopic index of severity. Gastroenterology. 2013;145:987-995.
– reference: 3) Schroeder KW, Tremaine WJ, Ilstrup DM. Coated oral 5-aminosalicylic acid therapy for mildly to moderately active ulcerative colitis. a randomized study. N Engl J Med. 1987;317:1625-1629.
– reference: 12) Honzawa Y, Matsuura M, Higuchi H, et al. A novel endoscopic imaging system for quantitative evaluation of colonic mucosal inflammation in patients with quiescent ulcerative colitis. Endosc lnt Open. 2020;8:E41-E49.
– reference: 13) Bossuyt P, Nakase H, Vermeire S, et al. Automatic computer-aided determination of endoscopic and histological inflammation in patients with mild to moderate ulcerative colitis based on red density. Gut. 2020;69:1778-1786.
– reference: 10) Takenaka K, Fujii T, Kawamoto A, et al. Deep neural network for video colonoscopy of ulcerative colitis: a cross-sectional study. Lancet Gastroenterol Hepatol. 2022;7:230-237.
– reference: 8) Kuroki T, Maeda Y, Kudo SE, et al. A novel artificial intelligence-assisted “vascular-healing” diagnosis for prediction of future clinical relapse in patients with ulcerative colitis: a prospective cohort study (with video). Gastrointest Endosc. 2024;100:97-108.
SSID ssib058744990
ssib058754845
ssib059973352
Score 1.9785627
Snippet ...
SourceID jstage
SourceType Publisher
StartPage 193
SubjectTerms 人工知能
炎症性腸疾患
粘膜治癒
Title 炎症性腸疾患の診断と治療におけるAIの現状
URI https://www.jstage.jst.go.jp/article/jsmu/85/3/85_193/_article/-char/ja
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 昭和医科大学雑誌, 2025, Vol.85(3), pp.193-198
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFB9qvXgRRcVvejDHXXcyyUyCp2Q7pRXqqYXehsxMFlywSt29eBB3QYQKipeKZw8WRBEPIgr9ZxZ2-2f4XjLbnUUPdaGE17xf8l7ey868ZPIRBHeobJmYF52GLZlsMJPDc7CQRaNjIVYoSslNhJuTNx_E69vs_g7fWTrzrbZqqd_Lm8Wzf-4rWcSrkAd-xV2y_-HZk0ohA2jwL6TgYUhP5WOSJkRQIlIkJNAJSWNcu6CAEERwooVjxUSnjkWJikgaQfxIVIoYJYhWyAKMWp2yBOZoSrR2xSUWrFi6IoSqCBk6AtTQaqNWN6iz5sQmiNVxPQx2AoUTyImEom0kIPUCQX2slRPFXFM4IlVMUkmkdiwoqwA_7S4I0S0UiARgKXYdV6e3ASMaGqFneJCfoskcLJ6r31_u42FgRE0Ud_hVlOzwzh6I98LiGZ6hNCGd-VJUv1IDlXN4tAmtT7X4DdnuZ7GoVepE5DwEarSJVLOnPE38PKyfVbH1PD73mqoa_7A-i-HeOaG_YrIKX0J_qfdfb0YmI1xL2n36qN8UvBllJ8XmThuv-nKGuEzwLMIEoNmUgZsBsy6MSM7SJAlxEe3m83T6BOd4mYKcfXeF_2FEPPtuzaVMcJMf3vg4bXd1kirqd3dOO4gJuzBCmq6udAHf1oXgfDVSW1Feo4vBUtdcCu5Nhm8m71-NX3w6fvlzcnA0Hn4cDb4eH_4aH3wZDQ7H339PPgxHg8-jwf5o8G40fK02gD95ezTZ_3E52F5Lt9rrjer-kUY3TIRp0DAS1sbwhyfVGcvDiLESz_izpWnRxLAkZ9KyQkShEYUp8g4tS0hNp7Q0N9GVYHn38a69Gqx0WEJL_KJf5niaVC4BLo2lYVzE3NroWpD4tmZP_CEz2WkdcX3hkjeCc9jJ_XzizWC5t9e3tyDC7uW3nVP_AHQTqP8
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E7%82%8E%E7%97%87%E6%80%A7%E8%85%B8%E7%96%BE%E6%82%A3%E3%81%AE%E8%A8%BA%E6%96%AD%E3%81%A8%E6%B2%BB%E7%99%82%E3%81%AB%E3%81%8A%E3%81%91%E3%82%8BAI%E3%81%AE%E7%8F%BE%E7%8A%B6&rft.jtitle=%E6%98%AD%E5%92%8C%E5%8C%BB%E7%A7%91%E5%A4%A7%E5%AD%A6%E9%9B%91%E8%AA%8C&rft.au=%E5%B0%8F%E5%BD%A2%2C+%E5%85%B8%E4%B9%8B&rft.au=%E6%9E%97%2C+%E6%AD%A6%E9%9B%85&rft.au=%E8%8B%A5%E6%9D%91%2C+%E9%82%A6%E5%BD%A6&rft.au=%E4%B8%89%E6%BE%A4%2C+%E5%B0%86%E5%8F%B2&rft.date=2025&rft.pub=%E6%98%AD%E5%92%8C%E5%8C%BB%E7%A7%91%E5%A4%A7%E5%AD%A6%E5%AD%A6%E5%A3%AB%E4%BC%9A&rft.issn=2759-8144&rft.eissn=2759-8152&rft.volume=85&rft.issue=3&rft.spage=193&rft.epage=198&rft_id=info:doi/10.14930%2Fjsmu.85.3_193&rft.externalDocID=article_jsmu_85_3_85_193_article_char_ja
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2759-8144&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2759-8144&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2759-8144&client=summon