A+: Adjusted Anchored Neighborhood Regression for Fast Super-Resolution
We address the problem of image upscaling in the form of single image super-resolution based on a dictionary of low- and high-resolution exemplars. Two recently proposed methods, Anchored Neighborhood Regression (ANR) and Simple Functions (SF), provide state-of-the-art quality performance. Moreover,...
Saved in:
Published in | Computer Vision -- ACCV 2014 pp. 111 - 126 |
---|---|
Main Authors | , , |
Format | Book Chapter |
Language | English Japanese |
Published |
Cham
Springer International Publishing
2015
|
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We address the problem of image upscaling in the form of single image super-resolution based on a dictionary of low- and high-resolution exemplars. Two recently proposed methods, Anchored Neighborhood Regression (ANR) and Simple Functions (SF), provide state-of-the-art quality performance. Moreover, ANR is among the fastest known super-resolution methods. ANR learns sparse dictionaries and regressors anchored to the dictionary atoms. SF relies on clusters and corresponding learned functions. We propose A+, an improved variant of ANR, which combines the best qualities of ANR and SF. A+ builds on the features and anchored regressors from ANR but instead of learning the regressors on the dictionary it uses the full training material, similar to SF. We validate our method on standard images and compare with state-of-the-art methods. We obtain improved quality (i.e. 0.2–0.7 dB PSNR better than ANR) and excellent time complexity, rendering A+ the most efficient dictionary-based super-resolution method to date. |
---|---|
ISBN: | 3319168169 9783319168166 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-319-16817-3_8 |