High-Throughput Investigation of a Lead-Free AlN-Based Piezoelectric Material, (Mg,Hf)xAl1-xN

We conducted a high-throughput investigation of the fundamental properties of (Mg,Hf)xAl1-xN thin films (0 < x < 0.24) aiming for developing high-performance AlN-based piezoelectric materials. For the high-throughput investigation, we prepared composition-gradient (Mg,Hf)xAl1-xN films...

Full description

Saved in:
Bibliographic Details
Published inACS combinatorial science Vol. 19; no. 6; pp. 365 - 369
Main Authors Nguyen, Hung H, Oguchi, Hiroyuki, Van Minh, Le, Kuwano, Hiroki
Format Journal Article
LanguageEnglish
Published 12.06.2017
Online AccessGet full text

Cover

Loading…
More Information
Summary:We conducted a high-throughput investigation of the fundamental properties of (Mg,Hf)xAl1-xN thin films (0 < x < 0.24) aiming for developing high-performance AlN-based piezoelectric materials. For the high-throughput investigation, we prepared composition-gradient (Mg,Hf)xAl1-xN films grown on a Si(100) substrate at 600 °C by cosputtering AlN and MgHf targets. To measure the properties of the various compositions at different positions within a single sample, we used characterization techniques with spatial resolution. X-ray diffraction (XRD) with a beam spot diameter of 1.0 mm verified that Mg and Hf had substituted into the Al sites and caused an elongation of the c-axis of AlN from 5.00 Å for x = 0 to 5.11 Å for x = 0.24. In addition, the uniaxial crystal orientation and high crystallinity required for piezoelectric materials to be used as application devices were confirmed. The piezoelectric response microscope indicated that this c-axis elongation increased the piezoelectric coefficient almost linearly from 1.48 pm/V for x = 0 to 5.19 pm/V for x = 0.24. The dielectric constants of (Mg,Hf)xAl1-xN were investigated using parallel plate capacitor structures with ∼0.07 mm2 electrodes and showed a slight increase by substitution. These results verified that (Mg,Hf)xAl1-xN is a promising material for piezoelectric-based application devices, especially for vibrational energy harvesters.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2156-8944
DOI:10.1021/acscombsci.6b00193