N2-Succinylated Intermediates in an Arginine Catabolic Pathway of Pseudomonas aeruginosa

Arginine-nonutilizing (aru) mutants of Pseudomonas aeruginosa strain PAO converted L-arginine to N2-succinylarginine or N-succinylglutamate, which were identified by high-voltage electrophoresis and HPLC. Addition of aminooxyacetate, an inhibitor of pyridoxal phosphate-dependent enzymes, to resting...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 83; no. 13; pp. 4937 - 4941
Main Authors Jann, Alfred, Stalon, Victor, Wauven, Corinne Vander, Leisinger, Thomas, Haas, Dieter
Format Journal Article
LanguageEnglish
Published Washington, DC National Academy of Sciences of the United States of America 01.07.1986
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Arginine-nonutilizing (aru) mutants of Pseudomonas aeruginosa strain PAO converted L-arginine to N2-succinylarginine or N-succinylglutamate, which were identified by high-voltage electrophoresis and HPLC. Addition of aminooxyacetate, an inhibitor of pyridoxal phosphate-dependent enzymes, to resting cells of the wild-type PAO1 in arginine medium led to the accumulation of N2-succinylornithine. Enzyme assays with crude P. aeruginosa extracts established the following pathway: L-arginine + succinyl-CoA → N2-succinylarginine → N2-succinylornithine → N-succinylglutamate 5-semialdehyde → N-succinylglutamate → succinate + glutamate. Succinyl-CoA may be regenerated from glutamate via 2-ketoglutarate. L-Arginine induced the enzymes of the pathway, and succinate caused catabolite repression. Purified N2-acetylornithine 5-aminotransferase (N2-acetyl-L-ornithine: 2-oxoglutarate aminotransferase, EC 2.6.1.11), an arginine biosynthetic enzyme, efficiently transaminated N2-succinylornithine; this explains the enzyme's dual role in arginine biosynthesis and catabolism. The succinylarginine pathway enables P. aeruginosa to utilize arginine efficiently as a carbon source under aerobic conditions, whereas the other three arginine catabolic pathways previously established in P. aeruginosa fulfill different functions.
Bibliography:To whom reprint requests should be addressed.
ISSN:0027-8424
1091-6490