大豆たんぱくゲルのレオロジー的性質について

The rheological properties of unheated and heated soy protein gel (16-20 g/100 ml) were investigated in region of small and large deformation. By the static and dynamic measurements of specimens, the dynamic viscoelasticity, the static viscoelasticity and the rupture properties were determined by th...

Full description

Saved in:
Bibliographic Details
Published inJournal of Home Economics of Japan Vol. 32; no. 9; pp. 660 - 666
Main Authors KOBAYASHI Michiko, AKABANE Hiro, NAKAHAMA Nobuko
Format Journal Article
LanguageJapanese
Published 一般社団法人 日本家政学会 1981
The Japan Society of Home Economics
Online AccessGet full text
ISSN0449-9069
1884-7870
DOI10.11428/jhej1951.32.660

Cover

More Information
Summary:The rheological properties of unheated and heated soy protein gel (16-20 g/100 ml) were investigated in region of small and large deformation. By the static and dynamic measurements of specimens, the dynamic viscoelasticity, the static viscoelasticity and the rupture properties were determined by the Rheolograph-Gel, Rheolometer and Dynagraph, respectively.It was recognized that all of the rheological parameters increased with the rise of concentration of soy protein gel. Especially, the concentration dependence of rupture stress and rupture energy in large deformation was remarkably large. However, the parameters of heated gel were about twice as large as those of unheated gel in case of small deformation. However, the former was about 10-20 times as large as the later in case of large deformation. Accordingly, it was recognized that heating process made unheated soy protein gel strong against rupture.It was found that the dynamic modulus corresponded to the modulus by the static measurement in all of the gels. The static and dynamic viscoelastic constants in small deformation differed obviously from the parameters of rupture property in various gels. 6~20g/100ml大豆たん白加熱ゲルおよび未加熱ゲルの力学的特性について, おもに濃度の影響を検討した.測定は, 静的方法と動的方法を用い, 微小変形と大変形の両領域の実験を行い, 動的および静的粘弾性定数, 破断特性値を得, 次のような結果を得た.1) 大豆たん白加熱ゲルおよび未加熱ゲルの動的粘弾性率は, 濃度増加に従い急激な上昇を示した.損失正接の値は約0.2であり, 濃度および加熱による変化はほとんど認められなかった.2) いずれのゲルの場合にも, 応力緩和曲線は6要素マックスウエル型模型に解析することができ, 粘弾性定数は濃度に依存して上昇した.3) 大豆たん白加熱ゲルの応力-ひずみ曲線は, 破断点の明らかな脆性破壊を示したが, 未加熱ゲルでは, 破断点がはっきり認められない特徴的な曲線となった.4) 破断ひずみは, 寒天および卵白ゲルに比べて, 大豆たん白加熱ゲルは0.66~0.88と著しく大であった.しかし, 未加熱ゲルの破断ひずみは0.29~0.55であり, 加熱により破断しにくいゲルとなることが示された.また, 破断応力および破断エネルギーは, 加熱により10~~20倍になることを示し, 微小変形の弾性率などが示す未加熱ゲルと加熱ゲルの2倍程度の開きを, はるかに上まわった.5) 動的弾性率E'と静的方法より求めた瞬間弾性率EHとはほぼ一致し, 静的方法と動的方法より求めた弾性率の対応が認められた.動的粘性率η'とマックウェルM3部の粘性率ηM3とは, 大小関係は一致したがオーダーの違いがあった.6) 大変形領域の特性値である破断応力Pfと, 微小変形領域の動的弾性率E'とは, ゲルの種類により明らかに異なるレオロジー特性であることが示された.
ISSN:0449-9069
1884-7870
DOI:10.11428/jhej1951.32.660