高性能マイクロ波放射計(AMSR2)長期可降水量プロダクトの比較

本研究では、水循環変動観測衛星 (Global Change Observation Mission-Water、 略称GCOM-W)に搭載された高性能マイクロ波放射計(Advanced Microwave Scanning Radiometer 2、 略称AMSR2)による長期可降水量(Total Precipitable Water, 略称TPW)プロダクトに着目した。GCOM-WはAqua衛星などの他の衛星との同時観測を目的としたAfternoon Constellation (A-train)軌道を飛行している。我々は、宇宙航空研究開発機構(Japan Aerospace Explor...

Full description

Saved in:
Bibliographic Details
Published in気象集誌. 第2輯 Vol. 101; no. 4; pp. 289 - 308
Main Authors 小原, 慧一, 計盛, 正博, 可知, 美佐子, 久保田, 拓志
Format Journal Article
LanguageEnglish
Published 公益社団法人 日本気象学会 2023
Subjects
Online AccessGet full text
ISSN0026-1165
2186-9057
DOI10.2151/jmsj.2023-018

Cover

Abstract 本研究では、水循環変動観測衛星 (Global Change Observation Mission-Water、 略称GCOM-W)に搭載された高性能マイクロ波放射計(Advanced Microwave Scanning Radiometer 2、 略称AMSR2)による長期可降水量(Total Precipitable Water, 略称TPW)プロダクトに着目した。GCOM-WはAqua衛星などの他の衛星との同時観測を目的としたAfternoon Constellation (A-train)軌道を飛行している。我々は、宇宙航空研究開発機構(Japan Aerospace Exploration Agency、 略称JAXA)とRemote Sensing Systems (RSS)により独自のアルゴリズムで開発された、2つのAMSR2 TPWプロダクトを2012年6月から2020年12月までのデータを用いて比較した。2つのプロダクト間では、TPWアノマリーのトレンドには特に違いは見られなかったが、TPWの絶対値には夏季の北西太平洋・北西大西洋で大きなTPWの差が見られた。我々は、この大きなTPWの差の原因となる気象条件を、再解析、現場観測、Aqua衛星搭載のMODerate resolution Imaging Spectroradiometer (MODIS)による可視赤外データを用いて調査した。これらの調査結果から、JAXAとRSSのTPWプロダクトの差が大きくなる場所では、大気下層に相対湿度が100%に近い逆転層があり、非常に低い高度の雲(霧)が存在する頻度が高いことが分かった。JAXAとRSSのTPW推定アルゴリズムの中で表現されている気温プロファイルを簡易的なモデルで近似し、それぞれのアルゴリズムへの逆転層と霧の影響の評価を、放射伝達モデルを用いて行った。感度実験の結果、逆転層がJAXAアルゴリズムでのTPWの過小推定、RSSアルゴリズムでのTPWの過大推定に関連していることが示唆された。
AbstractList 本研究では、水循環変動観測衛星 (Global Change Observation Mission-Water、 略称GCOM-W)に搭載された高性能マイクロ波放射計(Advanced Microwave Scanning Radiometer 2、 略称AMSR2)による長期可降水量(Total Precipitable Water, 略称TPW)プロダクトに着目した。GCOM-WはAqua衛星などの他の衛星との同時観測を目的としたAfternoon Constellation (A-train)軌道を飛行している。我々は、宇宙航空研究開発機構(Japan Aerospace Exploration Agency、 略称JAXA)とRemote Sensing Systems (RSS)により独自のアルゴリズムで開発された、2つのAMSR2 TPWプロダクトを2012年6月から2020年12月までのデータを用いて比較した。2つのプロダクト間では、TPWアノマリーのトレンドには特に違いは見られなかったが、TPWの絶対値には夏季の北西太平洋・北西大西洋で大きなTPWの差が見られた。我々は、この大きなTPWの差の原因となる気象条件を、再解析、現場観測、Aqua衛星搭載のMODerate resolution Imaging Spectroradiometer (MODIS)による可視赤外データを用いて調査した。これらの調査結果から、JAXAとRSSのTPWプロダクトの差が大きくなる場所では、大気下層に相対湿度が100%に近い逆転層があり、非常に低い高度の雲(霧)が存在する頻度が高いことが分かった。JAXAとRSSのTPW推定アルゴリズムの中で表現されている気温プロファイルを簡易的なモデルで近似し、それぞれのアルゴリズムへの逆転層と霧の影響の評価を、放射伝達モデルを用いて行った。感度実験の結果、逆転層がJAXAアルゴリズムでのTPWの過小推定、RSSアルゴリズムでのTPWの過大推定に関連していることが示唆された。
Author 小原, 慧一
可知, 美佐子
久保田, 拓志
計盛, 正博
Author_xml – sequence: 1
  orcidid: 0000-0002-6284-604X
  fullname: 小原, 慧一
  organization: 宇宙航空研究開発機構
– sequence: 1
  orcidid: 0000-0002-2037-3563
  fullname: 計盛, 正博
  organization: 気象庁
– sequence: 1
  fullname: 可知, 美佐子
  organization: 宇宙航空研究開発機構
– sequence: 1
  fullname: 久保田, 拓志
  organization: 宇宙航空研究開発機構
BookMark eNo9kE1LAlEUhi9hkFrLfsbYPffO3DsuRewDjKCv7eXOVzmoxYybdtYE2SLcGBVEQQQFUQoFbaw_c3FwVv6F1KLNORze97zwPhmUqh_UXYQWAecIGLDk10I_RzChGgZzBqUJmEzLY4OnUBpjwjQAZsyhTBj6k1PnLI12k5fruPk0jL5UdKdOHtVJV0Wv8ftD3Pke9E6Hz61Rv1VY39oko_55cvkZ394P2t3k5iLufSRnbRVdje0qak7_Wur4Le52hv1oHs16shq6C387i3aWS9vFVa28sbJWLJQ1H4gpNUqlZ-kO9WzmcBebFuY62Jzq2LM9KQ0K3OEMc4ODBVhaDoW8SanugEeBjZtmUek31w8bcs8Vh0GlJoMjIYNGxa66YoJEAAahT-cEjhjD-dftfRkIX9Ifga97Qw
ContentType Journal Article
DOI 10.2151/jmsj.2023-018
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 2186-9057
EndPage 308
ExternalDocumentID article_jmsj_101_4_101_2023_018_article_char_ja
GroupedDBID 29L
2WC
5GY
7.U
ABEFU
AENEX
AI.
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
E3Z
EBS
ECGQY
EJD
GROUPED_DOAJ
JSF
KQ8
OK1
P2P
RJT
RNS
TKC
VH1
VOH
ZY4
~02
ID FETCH-LOGICAL-j128a-33afb4d3fc6d7e08b0741c7340fcfaa5317d7607571b10abd3198334d1f316023
ISSN 0026-1165
IngestDate Wed Sep 03 06:30:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j128a-33afb4d3fc6d7e08b0741c7340fcfaa5317d7607571b10abd3198334d1f316023
ORCID 0000-0002-6284-604X
0000-0002-2037-3563
OpenAccessLink http://dx.doi.org/10.2151/jmsj.2023-018
PageCount 20
ParticipantIDs jstage_primary_article_jmsj_101_4_101_2023_018_article_char_ja
PublicationCentury 2000
PublicationDate 2023
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023
PublicationDecade 2020
PublicationTitle 気象集誌. 第2輯
PublicationYear 2023
Publisher 公益社団法人 日本気象学会
Publisher_xml – name: 公益社団法人 日本気象学会
References Kasahara, M., M. Kachi, K. Inaoka, H. Fujii, T. Kubota, R. Shimada, and Y. Kojima, 2020: Overview and current status of GOSAT-GW mission and AMSR3 instrument. Proc SPIE 11530, Sensors, Systems, and Next-Generation Satellites XXIV, 1153007, doi:10.1117/12.2573914 (Accessed July 8, 2022).
Dai, A., J. Wang, P. W. Thorne, D. E. Parker, L. Haimberger, and X. L. Wang, 2011: A new approach to homogenize daily radiosonde humidity data. J. Climate, 24, 965–991.
Geer, A. J., P. Bauer, and N. Bormann, 2010: Solar biases in microwave imager observations assimilated at ECMWF. IEEE Trans. Geosci. Remote Sens., 48, 2660–2669.
Kawanishi, T., T. Sezai, Y. Ito, K. Imaoka, T. Takeshima, Y. Ishido, A. Shibata, M. Miura, H. Inahata, and R. W. Spencer, 2003: The Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), NASDA's contribution to the EOS for global energy and water cycle studies. IEEE Trans. Geosci. Remote Sens., 41, 184–194.
Wang, J., L. Zhang, A. Dai, T. Van Hove, and J. Van Baelen, 2007: A near-global, 2-hourly data set of atmospheric precipitable water from ground-based GPS measurements. J. Geophys. Res., 112, D11107, doi:10.1029/2006JD007529.
Wentz, F. J., L. Ricciardulli, K. Hilburn, and C. Mears, 2007: How much more rain will global warming bring? Science, 317, 233–235.
Chen, B., and Z. Liu, 2016: Global water vapor variability and trend from the latest 36 year (1979 to 2014) data of ECMWF and NCEP reanalyses, radiosonde, GPS, and microwave satellite. J. Geophys. Res.: Atmos., 121, 11442–11462.
Nilsson, T., and G. Elgered, 2008: Long-term trends in the atmospheric water vapor content estimated from ground-based GPS data. J. Geophys. Res., 113, D19101, doi: 10.1029/2008jd010110.
Imaoka, K., M. Kachi, H. Fujii, H. Murakami, M. Hori, A. Ono, T. Igarashi, K. Nakagawa, T. Oki, Y. Honda, and H. Shimoda, 2010: Global Change Observation Mission (GCOM) for monitoring carbon, water cycles, and climate change. Proc. IEEE, 98, 717–734.
Schröder, M., M. Lockhoff, F. Fell, J. Forsythe, T. Trent, R. Bennartz, E. Borbas, M. G. Bosilovich, E. Castelli, H. Hersbach, M. Kachi, S. Kobayashi, E. R. Kursinski, D. Loyola, C. Mears, R. Preusker, W. B. Rossow, and S. Saha, 2018: The GEWEX Water Vapor Assessment archive of water vapour products from satellite observations and reanalyses. Earth Syst. Sci. Data, 10, 1093–1117.
Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth's global energy budget. Bull. Amer. Meteor. Soc., 90, 311–324.
Norris, J. R., and S. F. Iacobellis, 2005: North Pacific cloud feedbacks inferred from synoptic-scale dynamic and thermodynamic relationships. J. Climate, 18, 4862–4878.
Hashino, T., M. Satoh, Y. Hagihara, S. Kato, T. Kubota, T. Matsui, T. Nasuno, H. Okamoto, and M. Sekiguchi, 2016: Evaluating Arctic cloud radiative effects simulated by NICAM with A-train. J. Geophys. Res.: Atmos., 121, 7041–7063.
Sakurai, T., K. Yukio, and T. Kuragano, 2005: Merged satellite and in-situ data global daily SST. Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS ’05, Seoul, Korea, 2606–2608.
Zhai, P., and R. E. Eskridge, 1997: Atmospheric water vapor over China. J. Climate, 10, 2643–2652.
Mears, C. A., D. K. Smith, L. Ricciardulli, J. Wang, H. Huelsing, and F. J. Wentz, 2018: Construction and uncertainty estimation of a satellite-derived total precipitable water data record over the world's oceans. Earth Space Sci., 5, 197–210.
Kidd, C., G. Huffman, V. Maggioni, P. Chambon, and R. Oki, 2021: The global satellite precipitation constellation: Current status and future requirements. Bull. Amer. Meteor. Soc., 102, E1844–E1861.
Norris, J. R., and C. B. Leovy, 1994: Interannual variability in stratiform cloudiness and sea surface temperature. J. Climate, 7, 1915–1925.
Mieruch, S., S. Noël, H. Bovensmann, and J. P. Burrows, 2008: Analysis of global water vapour trends from satellite measurements in the visible spectral range. Atmos. Chem. Phys., 8, 491–504.
Mieruch, S., M. Schröder, S. Noël, and J. Schulz, 2014: Comparison of decadal global water vapor changes derived from independent satellite time series. J. Geophys. Res.: Atmos., 119, 12489–12499.
Hashino, T., M. Satoh, Y. Hagihara, T. Kubota, T. Matsui, T. Nasuno, and H. Okamoto, 2013: Evaluating cloud microphysics from NICAM against CloudSat and CALIPSO. J. Geophys. Res.: Atmos., 118, 7273–7292.
Wentz, F. J., 2000: Algorithm Theoretical Basis Document (ATBD) AMSR Ocean Algorithm (version 2). RSS Tech. Proposal 121599A-1, Remote Sensing Syst., Santa Rosa, CA, 74 pp. [Available at http://www.ssmi.com/tmiInfo.html.]
Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 1587–1606.
Wentz, F. J., and M. Schabel, 2000: Precise climate monitoring using complementary satellite data sets. Nature, 403, 414–416.
Kubar, T. L., D. E. Waliser, J.-L. Li, and X. Jiang, 2012: On the annual cycle, variability, and correlations of oceanic low-topped clouds with large-scale circulation using Aqua MODIS and ERA-Interim. J. Climate, 25, 6152–6174.
Schröder, M., M. Lockhoff, J. M. Forsythe, H. Q. Cronk, T. H. Vonder Haar, and R. Bennartz, 2016: The GEWEX water vapor assessment: Results from intercomparison, trend, and homogeneity analysis of total column water vapor. J. Appl. Meteor. Climatol., 55, 1633–1649.
Held, I. M., and B. J. Soden, 2000: Water vapor feedback and global warming. Annu. Rev. Energy Environ., 25, 441–475.
IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.), Cambridge University Press, Cambridge, UK, and New York, USA, 2391 pp.
IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller (eds.), Cambridge University Press, Cambridge, UK, and New York, USA, 996 pp.
Wentz, F. J., and T. Meissner, 2007: Supplement 1: Algorithm Theoretical Basis Document for AMSR-E Ocean Algorithms. RSS Tech. Rpt. 051707. Remote Sen. Syst., Santa Rosa, CA, 6 pp.
Ross, R. J., and W. P. Elliott, 2001: Radiosonde-based Northern Hemisphere tropospheric water vapor trends. J. Climate, 14, 1602–1612.
Schröder, M., M. Lockhoff, L. Shi, T. August, R. Bennartz, H. Brogniez, X. Calbet, F. Fell, J. Forsythe, A. Gambacorta, S. Ho, E. R. Kursinski, A. Reale, T. Trent, and Q. Yang, 2019: The GEWEX water vapor assessment: Overview and introduction to results and recommendations. Remote Sens., 11, 251, doi:10.3390/rs11030251.
IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley (eds.), Cambridge University Press, Cambridge, UK, and New York, USA, 1535 pp.
Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 1205–1218.
Wang, J., A. Dai, and C. Mears, 2016: Global water vapor trend from 1988 to 2011 and its diurnal asymmetry based on GPS, radiosonde, and microwave satellite measurements. J. Climate, 29, 5205–5222.
Kazumori, M., T. Egawa, and K. Yoshimoto, 2012: A retrieval algorithm of atmospheric water vapor and cloud liquid water for AMSR-E. Eur. J. Remote Sens., 45, 63–74.
Wagner, T., S. Beirle, M. Grzegorski, and U. Platt, 2006: Global trends (1996–2003) of total column precipitable water observed by Global Ozone Monitoring Experiment (GOME) on ERS-2 and their relation to near-surface temperature. J. Geophys. Res., 111, D12102, doi:10.1029/2005jd006523.
References_xml – reference: Norris, J. R., and S. F. Iacobellis, 2005: North Pacific cloud feedbacks inferred from synoptic-scale dynamic and thermodynamic relationships. J. Climate, 18, 4862–4878.
– reference: Wang, J., L. Zhang, A. Dai, T. Van Hove, and J. Van Baelen, 2007: A near-global, 2-hourly data set of atmospheric precipitable water from ground-based GPS measurements. J. Geophys. Res., 112, D11107, doi:10.1029/2006JD007529.
– reference: Kawanishi, T., T. Sezai, Y. Ito, K. Imaoka, T. Takeshima, Y. Ishido, A. Shibata, M. Miura, H. Inahata, and R. W. Spencer, 2003: The Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), NASDA's contribution to the EOS for global energy and water cycle studies. IEEE Trans. Geosci. Remote Sens., 41, 184–194.
– reference: Ross, R. J., and W. P. Elliott, 2001: Radiosonde-based Northern Hemisphere tropospheric water vapor trends. J. Climate, 14, 1602–1612.
– reference: Schröder, M., M. Lockhoff, J. M. Forsythe, H. Q. Cronk, T. H. Vonder Haar, and R. Bennartz, 2016: The GEWEX water vapor assessment: Results from intercomparison, trend, and homogeneity analysis of total column water vapor. J. Appl. Meteor. Climatol., 55, 1633–1649.
– reference: Kazumori, M., T. Egawa, and K. Yoshimoto, 2012: A retrieval algorithm of atmospheric water vapor and cloud liquid water for AMSR-E. Eur. J. Remote Sens., 45, 63–74.
– reference: Kidd, C., G. Huffman, V. Maggioni, P. Chambon, and R. Oki, 2021: The global satellite precipitation constellation: Current status and future requirements. Bull. Amer. Meteor. Soc., 102, E1844–E1861.
– reference: Nilsson, T., and G. Elgered, 2008: Long-term trends in the atmospheric water vapor content estimated from ground-based GPS data. J. Geophys. Res., 113, D19101, doi: 10.1029/2008jd010110.
– reference: Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 1205–1218.
– reference: Wentz, F. J., and M. Schabel, 2000: Precise climate monitoring using complementary satellite data sets. Nature, 403, 414–416.
– reference: Geer, A. J., P. Bauer, and N. Bormann, 2010: Solar biases in microwave imager observations assimilated at ECMWF. IEEE Trans. Geosci. Remote Sens., 48, 2660–2669.
– reference: Kasahara, M., M. Kachi, K. Inaoka, H. Fujii, T. Kubota, R. Shimada, and Y. Kojima, 2020: Overview and current status of GOSAT-GW mission and AMSR3 instrument. Proc SPIE 11530, Sensors, Systems, and Next-Generation Satellites XXIV, 1153007, doi:10.1117/12.2573914 (Accessed July 8, 2022).
– reference: Dai, A., J. Wang, P. W. Thorne, D. E. Parker, L. Haimberger, and X. L. Wang, 2011: A new approach to homogenize daily radiosonde humidity data. J. Climate, 24, 965–991.
– reference: Held, I. M., and B. J. Soden, 2000: Water vapor feedback and global warming. Annu. Rev. Energy Environ., 25, 441–475.
– reference: Wagner, T., S. Beirle, M. Grzegorski, and U. Platt, 2006: Global trends (1996–2003) of total column precipitable water observed by Global Ozone Monitoring Experiment (GOME) on ERS-2 and their relation to near-surface temperature. J. Geophys. Res., 111, D12102, doi:10.1029/2005jd006523.
– reference: Zhai, P., and R. E. Eskridge, 1997: Atmospheric water vapor over China. J. Climate, 10, 2643–2652.
– reference: IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller (eds.), Cambridge University Press, Cambridge, UK, and New York, USA, 996 pp.
– reference: Sakurai, T., K. Yukio, and T. Kuragano, 2005: Merged satellite and in-situ data global daily SST. Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS ’05, Seoul, Korea, 2606–2608.
– reference: Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth's global energy budget. Bull. Amer. Meteor. Soc., 90, 311–324.
– reference: Wang, J., A. Dai, and C. Mears, 2016: Global water vapor trend from 1988 to 2011 and its diurnal asymmetry based on GPS, radiosonde, and microwave satellite measurements. J. Climate, 29, 5205–5222.
– reference: Norris, J. R., and C. B. Leovy, 1994: Interannual variability in stratiform cloudiness and sea surface temperature. J. Climate, 7, 1915–1925.
– reference: IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley (eds.), Cambridge University Press, Cambridge, UK, and New York, USA, 1535 pp.
– reference: Wentz, F. J., 2000: Algorithm Theoretical Basis Document (ATBD) AMSR Ocean Algorithm (version 2). RSS Tech. Proposal 121599A-1, Remote Sensing Syst., Santa Rosa, CA, 74 pp. [Available at http://www.ssmi.com/tmiInfo.html.]
– reference: Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 1587–1606.
– reference: Schröder, M., M. Lockhoff, L. Shi, T. August, R. Bennartz, H. Brogniez, X. Calbet, F. Fell, J. Forsythe, A. Gambacorta, S. Ho, E. R. Kursinski, A. Reale, T. Trent, and Q. Yang, 2019: The GEWEX water vapor assessment: Overview and introduction to results and recommendations. Remote Sens., 11, 251, doi:10.3390/rs11030251.
– reference: Hashino, T., M. Satoh, Y. Hagihara, S. Kato, T. Kubota, T. Matsui, T. Nasuno, H. Okamoto, and M. Sekiguchi, 2016: Evaluating Arctic cloud radiative effects simulated by NICAM with A-train. J. Geophys. Res.: Atmos., 121, 7041–7063.
– reference: Mieruch, S., S. Noël, H. Bovensmann, and J. P. Burrows, 2008: Analysis of global water vapour trends from satellite measurements in the visible spectral range. Atmos. Chem. Phys., 8, 491–504.
– reference: Wentz, F. J., L. Ricciardulli, K. Hilburn, and C. Mears, 2007: How much more rain will global warming bring? Science, 317, 233–235.
– reference: Chen, B., and Z. Liu, 2016: Global water vapor variability and trend from the latest 36 year (1979 to 2014) data of ECMWF and NCEP reanalyses, radiosonde, GPS, and microwave satellite. J. Geophys. Res.: Atmos., 121, 11442–11462.
– reference: Wentz, F. J., and T. Meissner, 2007: Supplement 1: Algorithm Theoretical Basis Document for AMSR-E Ocean Algorithms. RSS Tech. Rpt. 051707. Remote Sen. Syst., Santa Rosa, CA, 6 pp.
– reference: Mears, C. A., D. K. Smith, L. Ricciardulli, J. Wang, H. Huelsing, and F. J. Wentz, 2018: Construction and uncertainty estimation of a satellite-derived total precipitable water data record over the world's oceans. Earth Space Sci., 5, 197–210.
– reference: Schröder, M., M. Lockhoff, F. Fell, J. Forsythe, T. Trent, R. Bennartz, E. Borbas, M. G. Bosilovich, E. Castelli, H. Hersbach, M. Kachi, S. Kobayashi, E. R. Kursinski, D. Loyola, C. Mears, R. Preusker, W. B. Rossow, and S. Saha, 2018: The GEWEX Water Vapor Assessment archive of water vapour products from satellite observations and reanalyses. Earth Syst. Sci. Data, 10, 1093–1117.
– reference: IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.), Cambridge University Press, Cambridge, UK, and New York, USA, 2391 pp.
– reference: Hashino, T., M. Satoh, Y. Hagihara, T. Kubota, T. Matsui, T. Nasuno, and H. Okamoto, 2013: Evaluating cloud microphysics from NICAM against CloudSat and CALIPSO. J. Geophys. Res.: Atmos., 118, 7273–7292.
– reference: Mieruch, S., M. Schröder, S. Noël, and J. Schulz, 2014: Comparison of decadal global water vapor changes derived from independent satellite time series. J. Geophys. Res.: Atmos., 119, 12489–12499.
– reference: Imaoka, K., M. Kachi, H. Fujii, H. Murakami, M. Hori, A. Ono, T. Igarashi, K. Nakagawa, T. Oki, Y. Honda, and H. Shimoda, 2010: Global Change Observation Mission (GCOM) for monitoring carbon, water cycles, and climate change. Proc. IEEE, 98, 717–734.
– reference: Kubar, T. L., D. E. Waliser, J.-L. Li, and X. Jiang, 2012: On the annual cycle, variability, and correlations of oceanic low-topped clouds with large-scale circulation using Aqua MODIS and ERA-Interim. J. Climate, 25, 6152–6174.
SSID ssj0026476
ssib026971113
Score 2.3353868
Snippet 本研究では、水循環変動観測衛星 (Global Change Observation Mission-Water、 略称GCOM-W)に搭載された高性能マイクロ波放射計(Advanced Microwave Scanning Radiometer 2、 略称AMSR2)による長期可降水量(Total...
SourceID jstage
SourceType Publisher
StartPage 289
SubjectTerms comparison and validation
Global Change Observation Mission-Water/Advanced Microwave Scanning Radiometer 2
inversion layer
long-term analysis
sea fog
water vapor content
Title 高性能マイクロ波放射計(AMSR2)長期可降水量プロダクトの比較
URI https://www.jstage.jst.go.jp/article/jmsj/101/4/101_2023-018/_article/-char/ja
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 気象集誌. 第2輯, 2023, Vol.101(4), pp.289-308
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1Na9RANJR68SJ-Yv0oe3A8KKlJZpLJXITJbpaiVFBa6W1JNllo0VZqe_FUu4L1IL1UVBAFERREW1DwUv0zS5fuqX_B994k2616sApDeDvzvl_Cm5edmVjWBT8RUogst30ulC1k07UT3-e2yCDf5qoJdxUWihM3gvEpcW3anx4avjSwamlpMR1rPvjjvpJ_iSr0QVxxl-wBIttnCh0AQ3zhChGG61_FmMWK6YipkMUBLlnQksUhCzmLaizmCKiYAI9pUQL1YkjXkCoCwENACRYBss8ih4UC-WhgBZzrLKoCABX_La_8pVCyAlxJpFWm6kga1ok9DCkWGvYOiwT2hBJHC6XkgAoEgO6_aIeS4eoyHSMf6FekFErngzPqQooi0yPAd0mBiIUBGaFZWB27zGLJdBWaVzDR_RXNpc3GghhNgduOPOqTR8Ex4AlnD7_vGolyoBX4YI7mxKXGlB7kXzhGInPtG3yJ_gZ5yB_wHcTTCOwRwohCLRAAB9SIg0BtSw1BPEnEYTn4Bsdsr6anjRTw0XyjcKjJG2W8oQe1pltBGVkaGvEHr4K6JsRI_7urSWcdEFm1tLrcwRHYeOySmQNQH36azFaOOSy8nxmL90wzg-99TJ4z330qpkycjub4LRvjbBKz8d37s2Not-0UqXb_AefF49NAPFxx2BB0RYoGUDTKcdyG2JiFWuiQJ6WLy3ev3-znDi9QEtJ2fxYG83z6sGTfVnO-Lqp0ZZ9CMPOchTqsXMNJ08rJo9aRoh6saCP9mDWUzx23RiaglJ1foH-8Khcr1TszUFfSrxPW7d7HF93l9zvt7532687Ku87KRqf9qfvlbXf9x_bmo50Pq7tbq_Sw7m496T371n31Zntto_fyaXfza-_xWqf9HNA77WWiW-08_NzdWN_Zap-0purxZHXcLj6OYs_ClDKxOU9aqch4qxlkMnfCFGuDpuTCaTVbSQKpVWYygIJAuqnrJGkGuTbkXGRui7sBGH_KGp6bn8tPWxVPZmmaZa7n5A5UTy2V5r7vuFmaJV7GU3_Eumpc1LhnTsBpHDBkZ_6XwVnrcBEvaOes4cWFpfw8FAOL6Si9RBule-EnkBjY9Q
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%AB%98%E6%80%A7%E8%83%BD%E3%83%9E%E3%82%A4%E3%82%AF%E3%83%AD%E6%B3%A2%E6%94%BE%E5%B0%84%E8%A8%88%EF%BC%88AMSR2%EF%BC%89%E9%95%B7%E6%9C%9F%E5%8F%AF%E9%99%8D%E6%B0%B4%E9%87%8F%E3%83%97%E3%83%AD%E3%83%80%E3%82%AF%E3%83%88%E3%81%AE%E6%AF%94%E8%BC%83&rft.jtitle=%E6%B0%97%E8%B1%A1%E9%9B%86%E8%AA%8C.+%E7%AC%AC2%E8%BC%AF&rft.au=%E5%B0%8F%E5%8E%9F%2C+%E6%85%A7%E4%B8%80&rft.au=%E8%A8%88%E7%9B%9B%2C+%E6%AD%A3%E5%8D%9A&rft.au=%E5%8F%AF%E7%9F%A5%2C+%E7%BE%8E%E4%BD%90%E5%AD%90&rft.au=%E4%B9%85%E4%BF%9D%E7%94%B0%2C+%E6%8B%93%E5%BF%97&rft.date=2023&rft.pub=%E5%85%AC%E7%9B%8A%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E6%97%A5%E6%9C%AC%E6%B0%97%E8%B1%A1%E5%AD%A6%E4%BC%9A&rft.issn=0026-1165&rft.eissn=2186-9057&rft.volume=101&rft.issue=4&rft.spage=289&rft.epage=308&rft_id=info:doi/10.2151%2Fjmsj.2023-018&rft.externalDocID=article_jmsj_101_4_101_2023_018_article_char_ja
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-1165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-1165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-1165&client=summon