Preparation of Visible-light Responsive Rutile-TiO2(110) Wafer with Well-defined Surface by Chromium and Antimony Codoping

Transition-metal doping for titanium dioxide (TiO2) is attracting attention for the study of visible-light responsive photocatalyst. Its photocatalytic properties were investigated via various spectroscopic approaches, though surface studies had not yet progressed owing to the difficulty in obtainin...

Full description

Saved in:
Bibliographic Details
Published inE-journal of surface science and nanotechnology Vol. 17; p. 5
Main Authors Kitta, Mitsunori, Onishi, Hiroshi
Format Journal Article
LanguageEnglish
Japanese
Published Tokyo Japan Science and Technology Agency 01.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Transition-metal doping for titanium dioxide (TiO2) is attracting attention for the study of visible-light responsive photocatalyst. Its photocatalytic properties were investigated via various spectroscopic approaches, though surface studies had not yet progressed owing to the difficulty in obtaining its well-defined surface. In this report, we propose that a well-defined crystalline TiO2(110) surface may be obtained by the codoping of chromium (Cr) and antimony (Sb) with commercially available wafers. Cr and Sb are codoped by a solid-state reaction of TiO2(110) wafer and dopant powder. The prepared wafer exhibited visible-light responsivity on absorption below wavelengths of 600 nm. The surface morphology characterization, performed by atomic force microscopy (AFM) revealed that the Cr and Sb codoped TiO2(110) surface has a well crystallized step-terrace structure that is atomically flat, while monodoped TiO2(110) surface does not. The codoping of Cr and Sb with TiO2(110) wafer should contributes towards retaining the stable rutile-TiO2 lattice structure and produces a well-defined TiO2(110) surface structure with visible-light responsive characteristics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1348-0391
DOI:10.1380/ejssnt.2019.5