Epigenetics Now and Then: Toward a New Resolution
エピジェネティクスは「細胞間遺伝するゲノム外の情報」を対象とした研究分野を指す。修飾パターンの複製分子メカニズムを持つDNAメチル化を真のエピジェネティックマークと呼ぶこともある、研究の進展とひろがりにより現在の研究範囲は基本的なDNAメチル化・ヒストン修飾にとどまらない。多細胞生物の体はゲノム情報を利用して多くの機能的な組織・器官をつくっている。単一の細胞はどの時点で異なる細胞種を生じるのか、細胞のアイデンティティとなる機能はいかに確立され維持され、どのように破綻するのか?当然ながらゲノム機能発現には転写因子などのトランス因子が大きな役割を持つが、予測された結合配列の配置のみでは結合箇所の予...
Saved in:
Published in | JSBi Bioinformatics Review Vol. 2; no. 1; pp. 7 - 14 |
---|---|
Main Author | |
Format | Journal Article |
Language | Japanese |
Published |
Japanese Society for Bioinformatics
2021
特定非営利活動法人 日本バイオインフォマティクス学会 |
Online Access | Get full text |
ISSN | 2435-7022 |
DOI | 10.11234/jsbibr.2021.primer2 |
Cover
Loading…
Abstract | エピジェネティクスは「細胞間遺伝するゲノム外の情報」を対象とした研究分野を指す。修飾パターンの複製分子メカニズムを持つDNAメチル化を真のエピジェネティックマークと呼ぶこともある、研究の進展とひろがりにより現在の研究範囲は基本的なDNAメチル化・ヒストン修飾にとどまらない。多細胞生物の体はゲノム情報を利用して多くの機能的な組織・器官をつくっている。単一の細胞はどの時点で異なる細胞種を生じるのか、細胞のアイデンティティとなる機能はいかに確立され維持され、どのように破綻するのか?当然ながらゲノム機能発現には転写因子などのトランス因子が大きな役割を持つが、予測された結合配列の配置のみでは結合箇所の予測が不十分であることはよく知られている。配列以外のゲノムへのアクセス状況の違いを司るエピジェネティック分子機構の可変と不変の仕組を理解するために、これまでの知識と情報のリソースに併せ、さらなる解像度を持つ解析手法を用いることによって情報の連係を見出すことが今後の課題とみている。私たちのからだが30億塩基以上の高ノイズなゲノム配列情報をうまく使って多くの細胞を生み出し、生命の営みを続けているその中で、大きな間違いをせずに発生・発達を繰り返すダイナミックな仕組みに思いを馳せていただければと思う。 |
---|---|
AbstractList | エピジェネティクスは「細胞間遺伝するゲノム外の情報」を対象とした研究分野を指す。修飾パターンの複製分子メカニズムを持つDNAメチル化を真のエピジェネティックマークと呼ぶこともある、研究の進展とひろがりにより現在の研究範囲は基本的なDNAメチル化・ヒストン修飾にとどまらない。多細胞生物の体はゲノム情報を利用して多くの機能的な組織・器官をつくっている。単一の細胞はどの時点で異なる細胞種を生じるのか、細胞のアイデンティティとなる機能はいかに確立され維持され、どのように破綻するのか?当然ながらゲノム機能発現には転写因子などのトランス因子が大きな役割を持つが、予測された結合配列の配置のみでは結合箇所の予測が不十分であることはよく知られている。配列以外のゲノムへのアクセス状況の違いを司るエピジェネティック分子機構の可変と不変の仕組を理解するために、これまでの知識と情報のリソースに併せ、さらなる解像度を持つ解析手法を用いることによって情報の連係を見出すことが今後の課題とみている。私たちのからだが30億塩基以上の高ノイズなゲノム配列情報をうまく使って多くの細胞を生み出し、生命の営みを続けているその中で、大きな間違いをせずに発生・発達を繰り返すダイナミックな仕組みに思いを馳せていただければと思う。 |
Author | Oda, Mayumi |
Author_FL | 小田 真由美 |
Author_FL_xml | – sequence: 1 fullname: 小田 真由美 |
Author_xml | – sequence: 1 orcidid: 0000-0001-5102-7076 fullname: Oda, Mayumi organization: Keio University, School of Medicine/Sakaguchi Memorial Laboratory (Department of Organoid Medicine) |
BackLink | https://cir.nii.ac.jp/crid/1390008156668276352$$DView record in CiNii |
BookMark | eNo9kE1LAzEQhoMoWGv_gYccvG5NJpuP9SalfkCpIPUcstnZNkvNlqRS_PduafUwMww8DPM-N-Qy9hEJueNsyjmI8qHLdajTFBjw6S6FL0xwQUZQClloBnBNJjl3jDEBQmsuR4TPd2GNEffBZ7rsD9TFhq42GB_pqj-41FBHl3igH5j77fc-9PGWXLVum3FynmPy-TxfzV6LxfvL2-xpUXScMSi8dHWl29YbUZcSSomNQsM8N6ISznBXG6HBOaw905VQ0HqBSoHWugFsSjEm96e7MQTrw7FzUQ2_Gy6VUga0EhIGbHnCurx3a7TH1C79WJeGSFu0JyMWLB_qbxn02LOef9BvXLIYxS_PLGP6 |
ContentType | Journal Article |
Copyright | 2021 Japan Society for Bioinformatics |
Copyright_xml | – notice: 2021 Japan Society for Bioinformatics |
DBID | RYH |
DOI | 10.11234/jsbibr.2021.primer2 |
DatabaseName | CiNii Complete |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitleAlternate | エピジェネティクス今昔:新しい解像度へ |
DocumentTitle_FL | エピジェネティクス今昔:新しい解像度へ |
EISSN | 2435-7022 |
EndPage | 14 |
ExternalDocumentID | 130008101629 article_jsbibr_2_1_2_jsbibr_2021_primer2_article_char_en |
GroupedDBID | JSF JSH M~E RJT RZJ RYH |
ID | FETCH-LOGICAL-j1002-c5ab97ffc83b45245ed6e80c18393a81ab8372aaebc079362fc3e662777d2ed43 |
IngestDate | Fri Jun 27 00:27:49 EDT 2025 Wed Sep 03 06:31:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 1 |
Language | Japanese |
License | https://creativecommons.org/licenses/by-nc-sa/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j1002-c5ab97ffc83b45245ed6e80c18393a81ab8372aaebc079362fc3e662777d2ed43 |
ORCID | 0000-0001-5102-7076 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jsbibr/2/1/2_jsbibr.2021.primer2/_article/-char/en |
PageCount | 8 |
ParticipantIDs | nii_cinii_1390008156668276352 jstage_primary_article_jsbibr_2_1_2_jsbibr_2021_primer2_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2021 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021 |
PublicationDecade | 2020 |
PublicationTitle | JSBi Bioinformatics Review |
PublicationTitleAlternate | JSBi Bioinformatics Review |
PublicationTitle_FL | JSBi Bioinformatics Review |
PublicationYear | 2021 |
Publisher | Japanese Society for Bioinformatics 特定非営利活動法人 日本バイオインフォマティクス学会 |
Publisher_xml | – name: Japanese Society for Bioinformatics – name: 特定非営利活動法人 日本バイオインフォマティクス学会 |
References | [10] Jambhekar, A., Dhall, A., & Shi, Y. (2019). Roles and regulation of histone methylation in animal development. Nature Reviews. Molecular Cell Biology, 20(10), 625-641. https://doi.org/10.1038/s41580-019-0151-1 [5] Saxton, D. S., & Rine, J. (2019). Epigenetic memory independent of symmetric histone inheritance. eLife, 8. https://doi.org/10.7554/eLife.51421 [32] G Hendrickson, D., Kelley, D. R., Tenen, D., Bernstein, B., & Rinn, J. L. (2016). Widespread RNA binding by chromatin-associated proteins. Genome Biology, 17, 28. https://doi.org/10.1186/s13059-016-0878-3 [16] Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y., & Greenleaf, W. J. (2013). Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nature Methods, 10(12), 1213-1218. https://doi.org/10.1038/nmeth.2688 [25] Buenrostro, J. D., Corces, M. R., Lareau, C. A., Wu, B., Schep, A. N., Aryee, M. J., Majeti, R., Chang, H. Y., & Greenleaf, W. J. (2018). Integrated Single-Cell Analysis Maps the Continuous Regulatory Landscape of Human Hematopoietic Differentiation. Cell, 173(6), 1535-1548.e16. https://doi.org/10.1016/j.cell.2018.03.074 [14] Boyle, A. P., Davis, S., Shulha, H. P., Meltzer, P., Margulies, E. H., Weng, Z., Furey, T. S., & Crawford, G. E. (2008). High-resolution mapping and characterization of open chromatin across the genome. Cell, 132(2), 311-322. https://doi.org/10.1016/j.cell.2007.12.014 [28] Veselovska, L., Smallwood, S. A., Saadeh, H., Stewart, K. R., Krueger, F., Maupetit-Méhouas, S., Arnaud, P., Tomizawa, S.-I., Andrews, S., & Kelsey, G. (2015). Deep sequencing and de novo assembly of the mouse oocyte transcriptome define the contribution of transcription to the DNA methylation landscape. Genome Biology, 16, 209. https://doi.org/10.1186/s13059-015-0769-z [30] Young, A. M. H., Kumasaka, N., Calvert, F., Hammond, T. R., Knights, A., Panousis, N., Park, J. S., Schwartzentruber, J., Liu, J., Kundu, K., Segel, M., Murphy, N. A., McMurran, C. E., Bulstrode, H., Correia, J., Budohoski, K. P., Joannides, A., Guilfoyle, M. R., Trivedi, R., … Gaffney, D. J. (2021). A map of transcriptional heterogeneity and regulatory variation in human microglia. Nature Genetics, 1-8. https://doi.org/10.1038/s41588-021-00875-2 [31] Di Ruscio, A., Ebralidze, A. K., Benoukraf, T., Amabile, G., Goff, L. A., Terragni, J., Figueroa, M. E., De Figueiredo Pontes, L. L., Alberich-Jorda, M., Zhang, P., Wu, M., D'Alò, F., Melnick, A., Leone, G., Ebralidze, K. K., Pradhan, S., Rinn, J. L., & Tenen, D. G. (2013). DNMT1-interacting RNAs block gene-specific DNA methylation. Nature, 503(7476), 371-376. https://doi.org/10.1038/nature12598 [19] Harada, A., Maehara, K., Handa, T., Arimura, Y., Nogami, J., Hayashi-Takanaka, Y., Shirahige, K., Kurumizaka, H., Kimura, H., & Ohkawa, Y. (2018). A chromatin integration labelling method enables epigenomic profiling with lower input. Nature Cell Biology, 21(2), 287-296. https://doi.org/10.1038/s41556-018-0248-3 [18] Kaya-Okur, H. S., Janssens, D. H., Henikoff, J. G., Ahmad, K., & Henikoff, S. (2020). Efficient low-cost chromatin profiling with CUT&Tag. Nature Protocols, 15(10), 3264-3283. https://doi.org/10.1038/s41596-020-0373-x [2] Wang, X., & Moazed, D. (2017). DNA sequence-dependent epigenetic inheritance of gene silencing and histone H3K9 methylation. Science, 356(6333), 88-91. https://doi.org/10.1126/science.aaj2114 [4] Wooten, M., Snedeker, J., Nizami, Z. F., Yang, X., Ranjan, R., Urban, E., Kim, J. M., Gall, J., Xiao, J., & Chen, X. (2019). Asymmetric histone inheritance via strand-specific incorporation and biased replication fork movement. Nature Structural & Molecular Biology, 26(8), 732-743. https://doi.org/10.1038/s41594-019-0269-z [21] Meers, M. P., Tenenbaum, D., & Henikoff, S. (2019). Peak calling by Sparse Enrichment Analysis for CUT&RUN chromatin profiling. Epigenetics & Chromatin, 12(1), 42. https://doi.org/10.1186/s13072-019-0287-4 [12] Bernstein, B. E., Stamatoyannopoulos, J. A., Costello, J. F., Ren, B., Milosavljevic, A., Meissner, A., Kellis, M., Marra, M. A., Beaudet, A. L., Ecker, J. R., Farnham, P. J., Hirst, M., Lander, E. S., Mikkelsen, T. S., & Thomson, J. A. (2010). The NIH Roadmap Epigenomics Mapping Consortium. Nature Biotechnology, 28(10), 1045-1048. https://doi.org/10.1038/nbt1010-1045 [7] Monk, D., Mackay, D. J. G., Eggermann, T., Maher, E. R., & Riccio, A. (2019). Genomic imprinting disorders: lessons on how genome, epigenome and environment interact. Nature Reviews. Genetics, 20(4), 235-248. https://doi.org/10.1038/s41576-018-0092-0 [23] Kelsey, G., Stegle, O., & Reik, W. (2017). Single-cell epigenomics: Recording the past and predicting the future. Science, 358(6359), 69-75. https://doi.org/10.1126/science.aan6826 [8] Loda, A., & Heard, E. (2019). Xist RNA in action: Past, present, and future. PLoS Genetics, 15(9), e1008333. https://doi.org/10.1371/journal.pgen.1008333 [27] Wu, S. J., Furlan, S. N., Mihalas, A. B., Kaya-Okur, H. S., Feroze, A. H., Emerson, S. N., Zheng, Y., Carson, K., Cimino, P. J., Keene, C. D., Sarthy, J. F., Gottardo, R., Ahmad, K., Henikoff, S., & Patel, A. P. (2021). Single-cell CUT&Tag analysis of chromatin modifications in differentiation and tumor progression. Nature Biotechnology, 39(7), 819-824. https://doi.org/10.1038/s41587-021-00865-z [9] Maze, I., Noh, K.-M., Soshnev, A. A., & Allis, C. D. (2014). Every amino acid matters: essential contributions of histone variants to mammalian development and disease. Nature Reviews. Genetics, 15(4), 259-271. https://doi.org/10.1038/nrg3673 [1] Greenberg, M. V. C., & Bourc'his, D. (2019). The diverse roles of DNA methylation in mammalian development and disease. Nature Reviews. Molecular Cell Biology, 20(10), 590-607. https://doi.org/10.1038/s41580-019-0159-6 [15] Schones, D. E., Cui, K., Cuddapah, S., Roh, T.-Y., Barski, A., Wang, Z., Wei, G., & Zhao, K. (2008). Dynamic regulation of nucleosome positioning in the human genome. Cell, 132(5), 887-898. https://doi.org/10.1016/j.cell.2008.02.022 [3] Petryk, N., Dalby, M., Wenger, A., Stromme, C. B., Strandsby, A., Andersson, R., & Groth, A. (2018). MCM2 promotes symmetric inheritance of modified histones during DNA replication. Science, 361(6409), 1389-1392. https://doi.org/10.1126/science.aau0294 [22] Meers, M. P., Bryson, T. D., Henikoff, J. G., & Henikoff, S. (2019). Improved CUT&RUN chromatin profiling tools. eLife, 8. https://doi.org/10.7554/eLife.46314 [13] Stunnenberg, H. G., International Human Epigenome Consortium, & Hirst, M. (2016). The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery. Cell, 167(7), 1897. https://doi.org/10.1016/j.cell.2016.12.002 [26] Bartosovic, M., Kabbe, M., & Castelo-Branco, G. (2021). Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues. Nature Biotechnology, 39(7), 825-835. https://doi.org/10.1038/s41587-021-00869-9 [24] Shema, E., Bernstein, B. E., & Buenrostro, J. D. (2019). Single-cell and single-molecule epigenomics to uncover genome regulation at unprecedented resolution. Nature Genetics, 51(1), 19-25. https://doi.org/10.1038/s41588-018-0290-x [29] Yan, R., Gu, C., You, D., Huang, Z., Qian, J., Yang, Q., Cheng, X., Zhang, L., Wang, H., Wang, P., & Guo, F. (2021). Decoding dynamic epigenetic landscapes in human oocytes using single-cell multi-omics sequencing. Cell Stem Cell. https://doi.org/10.1016/j.stem.2021.04.012 [20] Meers, M. P., Janssens, D. H., & Henikoff, S. (2019). Pioneer Factor-Nucleosome Binding Events during Differentiation Are Motif Encoded. Molecular Cell, 75(3), 562-575.e5. https://doi.org/10.1016/j.molcel.2019.05.025 [6] Burton, A., & Torres-Padilla, M.-E. (2014). Chromatin dynamics in the regulation of cell fate allocation during early embryogenesis. Nature Reviews. Molecular Cell Biology, 15(11), 723-734. https://doi.org/10.1038/nrm3885 [11] ENCODE Project Consortium. (2004). The ENCODE (ENCyclopedia Of DNA Elements) Project. Science, 306(5696), 636-640. https://doi.org/10.1126/science.1105136 [17] Skene, P. J., & Henikoff, S. (2017). An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. eLife, 6. https://doi.org/10.7554/eLife.21856 |
References_xml | – reference: [32] G Hendrickson, D., Kelley, D. R., Tenen, D., Bernstein, B., & Rinn, J. L. (2016). Widespread RNA binding by chromatin-associated proteins. Genome Biology, 17, 28. https://doi.org/10.1186/s13059-016-0878-3 – reference: [8] Loda, A., & Heard, E. (2019). Xist RNA in action: Past, present, and future. PLoS Genetics, 15(9), e1008333. https://doi.org/10.1371/journal.pgen.1008333 – reference: [5] Saxton, D. S., & Rine, J. (2019). Epigenetic memory independent of symmetric histone inheritance. eLife, 8. https://doi.org/10.7554/eLife.51421 – reference: [14] Boyle, A. P., Davis, S., Shulha, H. P., Meltzer, P., Margulies, E. H., Weng, Z., Furey, T. S., & Crawford, G. E. (2008). High-resolution mapping and characterization of open chromatin across the genome. Cell, 132(2), 311-322. https://doi.org/10.1016/j.cell.2007.12.014 – reference: [1] Greenberg, M. V. C., & Bourc'his, D. (2019). The diverse roles of DNA methylation in mammalian development and disease. Nature Reviews. Molecular Cell Biology, 20(10), 590-607. https://doi.org/10.1038/s41580-019-0159-6 – reference: [13] Stunnenberg, H. G., International Human Epigenome Consortium, & Hirst, M. (2016). The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery. Cell, 167(7), 1897. https://doi.org/10.1016/j.cell.2016.12.002 – reference: [4] Wooten, M., Snedeker, J., Nizami, Z. F., Yang, X., Ranjan, R., Urban, E., Kim, J. M., Gall, J., Xiao, J., & Chen, X. (2019). Asymmetric histone inheritance via strand-specific incorporation and biased replication fork movement. Nature Structural & Molecular Biology, 26(8), 732-743. https://doi.org/10.1038/s41594-019-0269-z – reference: [12] Bernstein, B. E., Stamatoyannopoulos, J. A., Costello, J. F., Ren, B., Milosavljevic, A., Meissner, A., Kellis, M., Marra, M. A., Beaudet, A. L., Ecker, J. R., Farnham, P. J., Hirst, M., Lander, E. S., Mikkelsen, T. S., & Thomson, J. A. (2010). The NIH Roadmap Epigenomics Mapping Consortium. Nature Biotechnology, 28(10), 1045-1048. https://doi.org/10.1038/nbt1010-1045 – reference: [6] Burton, A., & Torres-Padilla, M.-E. (2014). Chromatin dynamics in the regulation of cell fate allocation during early embryogenesis. Nature Reviews. Molecular Cell Biology, 15(11), 723-734. https://doi.org/10.1038/nrm3885 – reference: [27] Wu, S. J., Furlan, S. N., Mihalas, A. B., Kaya-Okur, H. S., Feroze, A. H., Emerson, S. N., Zheng, Y., Carson, K., Cimino, P. J., Keene, C. D., Sarthy, J. F., Gottardo, R., Ahmad, K., Henikoff, S., & Patel, A. P. (2021). Single-cell CUT&Tag analysis of chromatin modifications in differentiation and tumor progression. Nature Biotechnology, 39(7), 819-824. https://doi.org/10.1038/s41587-021-00865-z – reference: [10] Jambhekar, A., Dhall, A., & Shi, Y. (2019). Roles and regulation of histone methylation in animal development. Nature Reviews. Molecular Cell Biology, 20(10), 625-641. https://doi.org/10.1038/s41580-019-0151-1 – reference: [16] Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y., & Greenleaf, W. J. (2013). Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nature Methods, 10(12), 1213-1218. https://doi.org/10.1038/nmeth.2688 – reference: [24] Shema, E., Bernstein, B. E., & Buenrostro, J. D. (2019). Single-cell and single-molecule epigenomics to uncover genome regulation at unprecedented resolution. Nature Genetics, 51(1), 19-25. https://doi.org/10.1038/s41588-018-0290-x – reference: [18] Kaya-Okur, H. S., Janssens, D. H., Henikoff, J. G., Ahmad, K., & Henikoff, S. (2020). Efficient low-cost chromatin profiling with CUT&Tag. Nature Protocols, 15(10), 3264-3283. https://doi.org/10.1038/s41596-020-0373-x – reference: [11] ENCODE Project Consortium. (2004). The ENCODE (ENCyclopedia Of DNA Elements) Project. Science, 306(5696), 636-640. https://doi.org/10.1126/science.1105136 – reference: [28] Veselovska, L., Smallwood, S. A., Saadeh, H., Stewart, K. R., Krueger, F., Maupetit-Méhouas, S., Arnaud, P., Tomizawa, S.-I., Andrews, S., & Kelsey, G. (2015). Deep sequencing and de novo assembly of the mouse oocyte transcriptome define the contribution of transcription to the DNA methylation landscape. Genome Biology, 16, 209. https://doi.org/10.1186/s13059-015-0769-z – reference: [2] Wang, X., & Moazed, D. (2017). DNA sequence-dependent epigenetic inheritance of gene silencing and histone H3K9 methylation. Science, 356(6333), 88-91. https://doi.org/10.1126/science.aaj2114 – reference: [7] Monk, D., Mackay, D. J. G., Eggermann, T., Maher, E. R., & Riccio, A. (2019). Genomic imprinting disorders: lessons on how genome, epigenome and environment interact. Nature Reviews. Genetics, 20(4), 235-248. https://doi.org/10.1038/s41576-018-0092-0 – reference: [9] Maze, I., Noh, K.-M., Soshnev, A. A., & Allis, C. D. (2014). Every amino acid matters: essential contributions of histone variants to mammalian development and disease. Nature Reviews. Genetics, 15(4), 259-271. https://doi.org/10.1038/nrg3673 – reference: [20] Meers, M. P., Janssens, D. H., & Henikoff, S. (2019). Pioneer Factor-Nucleosome Binding Events during Differentiation Are Motif Encoded. Molecular Cell, 75(3), 562-575.e5. https://doi.org/10.1016/j.molcel.2019.05.025 – reference: [29] Yan, R., Gu, C., You, D., Huang, Z., Qian, J., Yang, Q., Cheng, X., Zhang, L., Wang, H., Wang, P., & Guo, F. (2021). Decoding dynamic epigenetic landscapes in human oocytes using single-cell multi-omics sequencing. Cell Stem Cell. https://doi.org/10.1016/j.stem.2021.04.012 – reference: [23] Kelsey, G., Stegle, O., & Reik, W. (2017). Single-cell epigenomics: Recording the past and predicting the future. Science, 358(6359), 69-75. https://doi.org/10.1126/science.aan6826 – reference: [25] Buenrostro, J. D., Corces, M. R., Lareau, C. A., Wu, B., Schep, A. N., Aryee, M. J., Majeti, R., Chang, H. Y., & Greenleaf, W. J. (2018). Integrated Single-Cell Analysis Maps the Continuous Regulatory Landscape of Human Hematopoietic Differentiation. Cell, 173(6), 1535-1548.e16. https://doi.org/10.1016/j.cell.2018.03.074 – reference: [19] Harada, A., Maehara, K., Handa, T., Arimura, Y., Nogami, J., Hayashi-Takanaka, Y., Shirahige, K., Kurumizaka, H., Kimura, H., & Ohkawa, Y. (2018). A chromatin integration labelling method enables epigenomic profiling with lower input. Nature Cell Biology, 21(2), 287-296. https://doi.org/10.1038/s41556-018-0248-3 – reference: [21] Meers, M. P., Tenenbaum, D., & Henikoff, S. (2019). Peak calling by Sparse Enrichment Analysis for CUT&RUN chromatin profiling. Epigenetics & Chromatin, 12(1), 42. https://doi.org/10.1186/s13072-019-0287-4 – reference: [3] Petryk, N., Dalby, M., Wenger, A., Stromme, C. B., Strandsby, A., Andersson, R., & Groth, A. (2018). MCM2 promotes symmetric inheritance of modified histones during DNA replication. Science, 361(6409), 1389-1392. https://doi.org/10.1126/science.aau0294 – reference: [15] Schones, D. E., Cui, K., Cuddapah, S., Roh, T.-Y., Barski, A., Wang, Z., Wei, G., & Zhao, K. (2008). Dynamic regulation of nucleosome positioning in the human genome. Cell, 132(5), 887-898. https://doi.org/10.1016/j.cell.2008.02.022 – reference: [17] Skene, P. J., & Henikoff, S. (2017). An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. eLife, 6. https://doi.org/10.7554/eLife.21856 – reference: [31] Di Ruscio, A., Ebralidze, A. K., Benoukraf, T., Amabile, G., Goff, L. A., Terragni, J., Figueroa, M. E., De Figueiredo Pontes, L. L., Alberich-Jorda, M., Zhang, P., Wu, M., D'Alò, F., Melnick, A., Leone, G., Ebralidze, K. K., Pradhan, S., Rinn, J. L., & Tenen, D. G. (2013). DNMT1-interacting RNAs block gene-specific DNA methylation. Nature, 503(7476), 371-376. https://doi.org/10.1038/nature12598 – reference: [22] Meers, M. P., Bryson, T. D., Henikoff, J. G., & Henikoff, S. (2019). Improved CUT&RUN chromatin profiling tools. eLife, 8. https://doi.org/10.7554/eLife.46314 – reference: [26] Bartosovic, M., Kabbe, M., & Castelo-Branco, G. (2021). Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues. Nature Biotechnology, 39(7), 825-835. https://doi.org/10.1038/s41587-021-00869-9 – reference: [30] Young, A. M. H., Kumasaka, N., Calvert, F., Hammond, T. R., Knights, A., Panousis, N., Park, J. S., Schwartzentruber, J., Liu, J., Kundu, K., Segel, M., Murphy, N. A., McMurran, C. E., Bulstrode, H., Correia, J., Budohoski, K. P., Joannides, A., Guilfoyle, M. R., Trivedi, R., … Gaffney, D. J. (2021). A map of transcriptional heterogeneity and regulatory variation in human microglia. Nature Genetics, 1-8. https://doi.org/10.1038/s41588-021-00875-2 |
SSID | ssj0003237715 |
Score | 1.8232992 |
Snippet | ... |
SourceID | nii jstage |
SourceType | Publisher |
StartPage | 7 |
Title | Epigenetics Now and Then: Toward a New Resolution |
URI | https://www.jstage.jst.go.jp/article/jsbibr/2/1/2_jsbibr.2021.primer2/_article/-char/en https://cir.nii.ac.jp/crid/1390008156668276352 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | JSBi Bioinformatics Review, 2021, Vol.2(1), pp.7-14 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFLYGXHaZQAONAZMPu1WBxHZsd7dtKkNILYcViVtkO7aUSpSqtAc48Nt5L86aRkWCcaiVJtVT6i9578vLe58J-e6s1rlSaRJsPyTCWbjndJonUijrJedK5Ng7PBzJi2txeZPftMtb1t0lC3vqHl_sK3kPqrAPcMUu2f9AdmUUdsA24AsjIAzjmzAezFBL09dKy6O7WNs7xnYLzJnX9bA9U1cwYpI-nkiHjP79VeFilI14am2m-67gqjS9oXlY3lbr2QHW5gUuIdbiGpad6s-uyRgCal_DBCpXpqzjGNkG_tHJqbVoGTtAN_0w4wId8b2Fh_5TPDEICNWtn7M27qyqAfGNWopCY5L1t8gOA8KPLnb41GbLOONKZXnT-4jWz16wDSxiApwaxRK2plW1RhTGu-RTw_DpzwjXHvkwMZ9JtgYVBagoQEURqh80AkUNBaBoC9Q-uT4fjH9fJM1qFckEZWwTlxvbVyE4za3Imch9Kb1OHVJQbnRmrOaKGeOtQ1FCyYLjHuX3lSqZLwU_INvTu6n_Qmgmgi7Rhs2cCKW1Xoey7zPYkEHq7JD8if-zmEVJkqK5BIs4KQUrMvj8-wIzVDQztPoh9vTBLXRITmCiClfhCA8DNRDA8KVmqFTIvr5y_Ih8RPMxJ3VMthfzpT8Blraw32oAnwGxk0Au |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epigenetics+Now+and+Then%3A+Toward+a+New+Resolution&rft.jtitle=JSBi+Bioinformatics+Review&rft.au=Oda+Mayumi&rft.date=2021&rft.pub=Japanese+Society+for+Bioinformatics&rft.eissn=2435-7022&rft.volume=2&rft.issue=1&rft.spage=7&rft.epage=14&rft_id=info:doi/10.11234%2Fjsbibr.2021.primer2&rft.externalDocID=130008101629 |