Reliable Board-Level Degradation Prediction with Monotonic Segmented Regression under Noisy Measurement
The increasing complexity of electronic systems in autonomous electric vehicles necessitates robust methods for forecasting the degradation of critical components such as printed circuit boards (PCBs). Various time series forecasting methods have been investigated to predict in-situ resistance degra...
Saved in:
Published in | Proceedings - IEEE VLSI Test Symposium pp. 1 - 7 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
28.04.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2375-1053 |
DOI | 10.1109/VTS65138.2025.11022944 |
Cover
Loading…
Abstract | The increasing complexity of electronic systems in autonomous electric vehicles necessitates robust methods for forecasting the degradation of critical components such as printed circuit boards (PCBs). Various time series forecasting methods have been investigated to predict in-situ resistance degradation under vibration loads. However, these methods failed to capture the degradation trend under strong measurement noise. This paper introduces Monotonic Segmented Linear Regression (MSLR), a novel approach designed to capture monotonic degradation trends in time series data under significant measurement noise. By incorporating monotonic constraints, MSLR effectively models the non-decreasing behavior characteristic of degradation processes. To further enhance reliability of the prediction, we integrate Adaptive Conformal Inference (ACI) with MSLR, enabling the estimation of statistically valid upper bounds for resistance degradation with high confidence. Extensive experiments demonstrate that MSLR outperforms state-of-the-art time series forecasting baselines on real-world PCB degradation datasets. |
---|---|
AbstractList | The increasing complexity of electronic systems in autonomous electric vehicles necessitates robust methods for forecasting the degradation of critical components such as printed circuit boards (PCBs). Various time series forecasting methods have been investigated to predict in-situ resistance degradation under vibration loads. However, these methods failed to capture the degradation trend under strong measurement noise. This paper introduces Monotonic Segmented Linear Regression (MSLR), a novel approach designed to capture monotonic degradation trends in time series data under significant measurement noise. By incorporating monotonic constraints, MSLR effectively models the non-decreasing behavior characteristic of degradation processes. To further enhance reliability of the prediction, we integrate Adaptive Conformal Inference (ACI) with MSLR, enabling the estimation of statistically valid upper bounds for resistance degradation with high confidence. Extensive experiments demonstrate that MSLR outperforms state-of-the-art time series forecasting baselines on real-world PCB degradation datasets. |
Author | Thukral, Varun Li, Peng Yin, Yuxuan Chen, Rebecca He, Chen |
Author_xml | – sequence: 1 givenname: Yuxuan surname: Yin fullname: Yin, Yuxuan email: y_yin@ucsb.edu organization: University of California Santa Barbara,Department of Electrical and Computer Engineering,CA,USA – sequence: 2 givenname: Rebecca surname: Chen fullname: Chen, Rebecca email: rebecca.chen_1@nxp.com organization: Automotive Processing, NXP Semiconductors,TX,USA – sequence: 3 givenname: Varun surname: Thukral fullname: Thukral, Varun email: varun.thukral@nxp.com organization: NXP Semiconductors & TU Delft,Nijmegen,The Netherlands – sequence: 4 givenname: Chen surname: He fullname: He, Chen email: chen.he@nxp.com organization: Automotive Processing, NXP Semiconductors,TX,USA – sequence: 5 givenname: Peng surname: Li fullname: Li, Peng email: lip@ucsb.edu organization: University of California Santa Barbara,Department of Electrical and Computer Engineering,CA,USA |
BookMark | eNo1kMtOwzAURA0Cibb0DxDyD6T4-pHYSyhPqQXURmwrJ74pRmmM7BTUv4fyWM3R6GgWMyRHXeiQkHNgEwBmLl7KZa5A6AlnXO0rzo2UB2RsCqOFAMVBSn1IBlwUKgOmxAkZpvTGGGdKsgFZL7D1tmqRXgUbXTbDD2zpNa6jdbb3oaPPEZ2vf_DT9690HrrQh87XdInrDXY9Orr49jGlvbPtHEb6GHza0TnatI24l07JcWPbhOO_HJHy9qac3mezp7uH6eUs80b0WS0b7ljdVKrJnXDAagMyry2YhhXOgKq0kSYvqkpa7YxzWksAsFyAY8iFGJGz31mPiKv36Dc27lb_v4gv5SFbCQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/VTS65138.2025.11022944 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9798331521448 |
EISSN | 2375-1053 |
EndPage | 7 |
ExternalDocumentID | 11022944 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science Foundation funderid: 10.13039/100000001 |
GroupedDBID | 6IE 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i93t-c4f2d0cfb5f6d3d10c9146ca19f07d915b894967bb4a8d9dd884111a231d0e233 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 01:43:48 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i93t-c4f2d0cfb5f6d3d10c9146ca19f07d915b894967bb4a8d9dd884111a231d0e233 |
PageCount | 7 |
ParticipantIDs | ieee_primary_11022944 |
PublicationCentury | 2000 |
PublicationDate | 2025-April-28 |
PublicationDateYYYYMMDD | 2025-04-28 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-April-28 day: 28 |
PublicationDecade | 2020 |
PublicationTitle | Proceedings - IEEE VLSI Test Symposium |
PublicationTitleAbbrev | VTS |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0020540 |
Score | 2.2899234 |
Snippet | The increasing complexity of electronic systems in autonomous electric vehicles necessitates robust methods for forecasting the degradation of critical... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Board-Level Reliability Degradation Electrical resistance measurement Forecasting N-BEATS Noise Noise measurement Physical Health Monitoring Physics of Degradation Prognostics Reliability Resistance Segmented Regression Time measurement Time series analysis Vibrations |
Title | Reliable Board-Level Degradation Prediction with Monotonic Segmented Regression under Noisy Measurement |
URI | https://ieeexplore.ieee.org/document/11022944 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFA62J724VdzJwetMk5nMkqtLKWKL2Cq9lUnyUorQkTo96K83L9NFBcFbGMjMkJC87fu-R8iVVcxmiheBs206EDzjgZTaIGPZgAALqW8G0-un3WdxP0pGS7K658IAgAefQYhDX8s3pV5gqqzNMTyRQjRIw0VuNVlrHV2h77GkAHMm2y_DQZrwGNFbURKuZv7ooeJNSGeX9Fcfr5Ejr-GiUqH-_KXL-O-_2yOtDVuPPq7t0D7ZgtkB2fkmNHhIJog8RpIUvS4RJfuAUCF6i0IRdU8l9wKs2PghpmapO-tlhbK5dAATL9xp6BNMatTsjCL1bE775fT9g_Y2acYWGXbuhjfdYNliIZjKuAq0sJFh2qrEpiY2nGnpbk5dcGlZZiRPVC6FTDOlRJEbaUyeC3c5Fs4pNAyiOD4izVk5g2NCk8QUJuZaC2DCFDiLCy3BuXg210yckBYu2fitFtEYr1br9I_nZ2Qbdw4LN1F-TprVfAEXzv5X6tLv-xcdBrFx |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHIALWxE7PnBNajd2El9ZqgJthGhAvVWJl6pCSlBJD_D1eJyWAhISNyuS48iOPeOZ994gdGFyYqKcZp61bdJjNKKeEFIBY1lppo0OXTGYfhJ2n9jdkA_nZHXHhdFaO_CZ9qHpcvmqlDMIlbUoXE8EY6tojQMbt6Zrfd2vwPuYk4ApEa3ndBByGgB-q839Rd8fVVScEelsoWQxfI0defFnVe7Lj1_KjP_-vm3UXPL18MOXJdpBK7rYRZvfpAb30Biwx0CTwpcl4GR7ABbC1yAVUVdVsi-AnI1rQnAW291eViCciwd67KQ7FX7U4xo3W2Agn01xUk7e3nF_GWhsorRzk151vXmRBW8igsqTzLQVkSbnJlSBokQKe3bKjApDIiUoz2PBRBjlOctiJZSKY2aPx8y6hYrodhDso0ZRFvoAYc5VpgIqJdOEqQx6USaFtk6eiSVhh6gJUzZ6rWU0RovZOvrj-Tla76b93qh3m9wfow1YRUjjtOMT1KimM31qvYEqP3P_wCeJjLS5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+IEEE+VLSI+Test+Symposium&rft.atitle=Reliable+Board-Level+Degradation+Prediction+with+Monotonic+Segmented+Regression+under+Noisy+Measurement&rft.au=Yin%2C+Yuxuan&rft.au=Chen%2C+Rebecca&rft.au=Thukral%2C+Varun&rft.au=He%2C+Chen&rft.date=2025-04-28&rft.pub=IEEE&rft.eissn=2375-1053&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FVTS65138.2025.11022944&rft.externalDocID=11022944 |