Reliable Board-Level Degradation Prediction with Monotonic Segmented Regression under Noisy Measurement

The increasing complexity of electronic systems in autonomous electric vehicles necessitates robust methods for forecasting the degradation of critical components such as printed circuit boards (PCBs). Various time series forecasting methods have been investigated to predict in-situ resistance degra...

Full description

Saved in:
Bibliographic Details
Published inProceedings - IEEE VLSI Test Symposium pp. 1 - 7
Main Authors Yin, Yuxuan, Chen, Rebecca, Thukral, Varun, He, Chen, Li, Peng
Format Conference Proceeding
LanguageEnglish
Published IEEE 28.04.2025
Subjects
Online AccessGet full text
ISSN2375-1053
DOI10.1109/VTS65138.2025.11022944

Cover

Loading…
Abstract The increasing complexity of electronic systems in autonomous electric vehicles necessitates robust methods for forecasting the degradation of critical components such as printed circuit boards (PCBs). Various time series forecasting methods have been investigated to predict in-situ resistance degradation under vibration loads. However, these methods failed to capture the degradation trend under strong measurement noise. This paper introduces Monotonic Segmented Linear Regression (MSLR), a novel approach designed to capture monotonic degradation trends in time series data under significant measurement noise. By incorporating monotonic constraints, MSLR effectively models the non-decreasing behavior characteristic of degradation processes. To further enhance reliability of the prediction, we integrate Adaptive Conformal Inference (ACI) with MSLR, enabling the estimation of statistically valid upper bounds for resistance degradation with high confidence. Extensive experiments demonstrate that MSLR outperforms state-of-the-art time series forecasting baselines on real-world PCB degradation datasets.
AbstractList The increasing complexity of electronic systems in autonomous electric vehicles necessitates robust methods for forecasting the degradation of critical components such as printed circuit boards (PCBs). Various time series forecasting methods have been investigated to predict in-situ resistance degradation under vibration loads. However, these methods failed to capture the degradation trend under strong measurement noise. This paper introduces Monotonic Segmented Linear Regression (MSLR), a novel approach designed to capture monotonic degradation trends in time series data under significant measurement noise. By incorporating monotonic constraints, MSLR effectively models the non-decreasing behavior characteristic of degradation processes. To further enhance reliability of the prediction, we integrate Adaptive Conformal Inference (ACI) with MSLR, enabling the estimation of statistically valid upper bounds for resistance degradation with high confidence. Extensive experiments demonstrate that MSLR outperforms state-of-the-art time series forecasting baselines on real-world PCB degradation datasets.
Author Thukral, Varun
Li, Peng
Yin, Yuxuan
Chen, Rebecca
He, Chen
Author_xml – sequence: 1
  givenname: Yuxuan
  surname: Yin
  fullname: Yin, Yuxuan
  email: y_yin@ucsb.edu
  organization: University of California Santa Barbara,Department of Electrical and Computer Engineering,CA,USA
– sequence: 2
  givenname: Rebecca
  surname: Chen
  fullname: Chen, Rebecca
  email: rebecca.chen_1@nxp.com
  organization: Automotive Processing, NXP Semiconductors,TX,USA
– sequence: 3
  givenname: Varun
  surname: Thukral
  fullname: Thukral, Varun
  email: varun.thukral@nxp.com
  organization: NXP Semiconductors & TU Delft,Nijmegen,The Netherlands
– sequence: 4
  givenname: Chen
  surname: He
  fullname: He, Chen
  email: chen.he@nxp.com
  organization: Automotive Processing, NXP Semiconductors,TX,USA
– sequence: 5
  givenname: Peng
  surname: Li
  fullname: Li, Peng
  email: lip@ucsb.edu
  organization: University of California Santa Barbara,Department of Electrical and Computer Engineering,CA,USA
BookMark eNo1kMtOwzAURA0Cibb0DxDyD6T4-pHYSyhPqQXURmwrJ74pRmmM7BTUv4fyWM3R6GgWMyRHXeiQkHNgEwBmLl7KZa5A6AlnXO0rzo2UB2RsCqOFAMVBSn1IBlwUKgOmxAkZpvTGGGdKsgFZL7D1tmqRXgUbXTbDD2zpNa6jdbb3oaPPEZ2vf_DT9690HrrQh87XdInrDXY9Orr49jGlvbPtHEb6GHza0TnatI24l07JcWPbhOO_HJHy9qac3mezp7uH6eUs80b0WS0b7ljdVKrJnXDAagMyry2YhhXOgKq0kSYvqkpa7YxzWksAsFyAY8iFGJGz31mPiKv36Dc27lb_v4gv5SFbCQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/VTS65138.2025.11022944
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798331521448
EISSN 2375-1053
EndPage 7
ExternalDocumentID 11022944
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  funderid: 10.13039/100000001
GroupedDBID 6IE
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i93t-c4f2d0cfb5f6d3d10c9146ca19f07d915b894967bb4a8d9dd884111a231d0e233
IEDL.DBID RIE
IngestDate Wed Aug 27 01:43:48 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-c4f2d0cfb5f6d3d10c9146ca19f07d915b894967bb4a8d9dd884111a231d0e233
PageCount 7
ParticipantIDs ieee_primary_11022944
PublicationCentury 2000
PublicationDate 2025-April-28
PublicationDateYYYYMMDD 2025-04-28
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-April-28
  day: 28
PublicationDecade 2020
PublicationTitle Proceedings - IEEE VLSI Test Symposium
PublicationTitleAbbrev VTS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020540
Score 2.2899234
Snippet The increasing complexity of electronic systems in autonomous electric vehicles necessitates robust methods for forecasting the degradation of critical...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Board-Level Reliability
Degradation
Electrical resistance measurement
Forecasting
N-BEATS
Noise
Noise measurement
Physical Health Monitoring
Physics of Degradation
Prognostics
Reliability
Resistance
Segmented Regression
Time measurement
Time series analysis
Vibrations
Title Reliable Board-Level Degradation Prediction with Monotonic Segmented Regression under Noisy Measurement
URI https://ieeexplore.ieee.org/document/11022944
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFA62J724VdzJwetMk5nMkqtLKWKL2Cq9lUnyUorQkTo96K83L9NFBcFbGMjMkJC87fu-R8iVVcxmiheBs206EDzjgZTaIGPZgAALqW8G0-un3WdxP0pGS7K658IAgAefQYhDX8s3pV5gqqzNMTyRQjRIw0VuNVlrHV2h77GkAHMm2y_DQZrwGNFbURKuZv7ooeJNSGeX9Fcfr5Ejr-GiUqH-_KXL-O-_2yOtDVuPPq7t0D7ZgtkB2fkmNHhIJog8RpIUvS4RJfuAUCF6i0IRdU8l9wKs2PghpmapO-tlhbK5dAATL9xp6BNMatTsjCL1bE775fT9g_Y2acYWGXbuhjfdYNliIZjKuAq0sJFh2qrEpiY2nGnpbk5dcGlZZiRPVC6FTDOlRJEbaUyeC3c5Fs4pNAyiOD4izVk5g2NCk8QUJuZaC2DCFDiLCy3BuXg210yckBYu2fitFtEYr1br9I_nZ2Qbdw4LN1F-TprVfAEXzv5X6tLv-xcdBrFx
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHIALWxE7PnBNajd2El9ZqgJthGhAvVWJl6pCSlBJD_D1eJyWAhISNyuS48iOPeOZ994gdGFyYqKcZp61bdJjNKKeEFIBY1lppo0OXTGYfhJ2n9jdkA_nZHXHhdFaO_CZ9qHpcvmqlDMIlbUoXE8EY6tojQMbt6Zrfd2vwPuYk4ApEa3ndBByGgB-q839Rd8fVVScEelsoWQxfI0defFnVe7Lj1_KjP_-vm3UXPL18MOXJdpBK7rYRZvfpAb30Biwx0CTwpcl4GR7ABbC1yAVUVdVsi-AnI1rQnAW291eViCciwd67KQ7FX7U4xo3W2Agn01xUk7e3nF_GWhsorRzk151vXmRBW8igsqTzLQVkSbnJlSBokQKe3bKjApDIiUoz2PBRBjlOctiJZSKY2aPx8y6hYrodhDso0ZRFvoAYc5VpgIqJdOEqQx6USaFtk6eiSVhh6gJUzZ6rWU0RovZOvrj-Tla76b93qh3m9wfow1YRUjjtOMT1KimM31qvYEqP3P_wCeJjLS5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+IEEE+VLSI+Test+Symposium&rft.atitle=Reliable+Board-Level+Degradation+Prediction+with+Monotonic+Segmented+Regression+under+Noisy+Measurement&rft.au=Yin%2C+Yuxuan&rft.au=Chen%2C+Rebecca&rft.au=Thukral%2C+Varun&rft.au=He%2C+Chen&rft.date=2025-04-28&rft.pub=IEEE&rft.eissn=2375-1053&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FVTS65138.2025.11022944&rft.externalDocID=11022944