ChipMnd: LLMs for Agile Chip Design
The increasing complexity of semiconductor design, along with stringent performance, power, and time-to-market requirements, has outpaced the capabilities of traditional Electronic Design Automation (EDA) methodologies. Conventional design workflows rely on manual intervention for critical tasks suc...
Saved in:
Published in | Proceedings - IEEE VLSI Test Symposium pp. 1 - 10 |
---|---|
Main Authors | , , , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
28.04.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2375-1053 |
DOI | 10.1109/VTS65138.2025.11022936 |
Cover
Loading…
Abstract | The increasing complexity of semiconductor design, along with stringent performance, power, and time-to-market requirements, has outpaced the capabilities of traditional Electronic Design Automation (EDA) methodologies. Conventional design workflows rely on manual intervention for critical tasks such as hardware description, synthesis optimization, and verification, leading to inefficiencies and scalability limitations. Large Language Models (LLMs) present a transformative approach by automating key stages of the design pipeline, enabling intelligent synthesis tuning, test generation, and security analysis. This paper introduces ChipMind, an LLM-driven framework comprising specialized agents and modules for digital and analog chip design. ChipMind integrates AI-driven methodologies to enhance design efficiency, accelerate prototyping, and optimize key design trade-offs, thereby addressing fundamental challenges in modern semiconductor development. |
---|---|
AbstractList | The increasing complexity of semiconductor design, along with stringent performance, power, and time-to-market requirements, has outpaced the capabilities of traditional Electronic Design Automation (EDA) methodologies. Conventional design workflows rely on manual intervention for critical tasks such as hardware description, synthesis optimization, and verification, leading to inefficiencies and scalability limitations. Large Language Models (LLMs) present a transformative approach by automating key stages of the design pipeline, enabling intelligent synthesis tuning, test generation, and security analysis. This paper introduces ChipMind, an LLM-driven framework comprising specialized agents and modules for digital and analog chip design. ChipMind integrates AI-driven methodologies to enhance design efficiency, accelerate prototyping, and optimize key design trade-offs, thereby addressing fundamental challenges in modern semiconductor development. |
Author | Pan, David Z. Yin, Ziang Farahani, Bahar Firouzi, Farshad Chakrabarty, Krishnendu Chaudhuri, Jayeeta Ma, Pingchuan Gu, Jiaqi Domanski, Peter |
Author_xml | – sequence: 1 givenname: Farshad surname: Firouzi fullname: Firouzi, Farshad organization: Arizona State University – sequence: 2 givenname: David Z. surname: Pan fullname: Pan, David Z. organization: University of Texas at Austin – sequence: 3 givenname: Jiaqi surname: Gu fullname: Gu, Jiaqi organization: Arizona State University – sequence: 4 givenname: Bahar surname: Farahani fullname: Farahani, Bahar organization: Shahid Beheshti University – sequence: 5 givenname: Jayeeta surname: Chaudhuri fullname: Chaudhuri, Jayeeta organization: Arizona State University – sequence: 6 givenname: Ziang surname: Yin fullname: Yin, Ziang organization: Arizona State University – sequence: 7 givenname: Pingchuan surname: Ma fullname: Ma, Pingchuan organization: Arizona State University – sequence: 8 givenname: Peter surname: Domanski fullname: Domanski, Peter organization: Arizona State University – sequence: 9 givenname: Krishnendu surname: Chakrabarty fullname: Chakrabarty, Krishnendu organization: Arizona State University |
BookMark | eNo1j8tKAzEUQK-iYFv7ByIB11Nzb97uytQXTHHh4LZkJkmN1GmZuPHvpairA2dx4EzhbNgPEeAa-QKRu9u39lUrFHZBnNRRETmhT2DujLNCoCKU0p7ChIRRFXIlLmBaygfnxJXkE7ip3_NhPYQ71jTrwtJ-ZMtt3kV29GwVS94Ol3Ce_K7E-R9n0D7ct_VT1bw8PtfLpspOfFUkKZGW2mNnVZec7kKwXQyRkumDk5H70FurpbIategTkUXDjfJShh6TmMHVbzbHGDeHMX_68Xvz_yR-AHvRQCA |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/VTS65138.2025.11022936 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9798331521448 |
EISSN | 2375-1053 |
EndPage | 10 |
ExternalDocumentID | 11022936 |
Genre | orig-research |
GroupedDBID | 6IE 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i93t-242f2646a1b85bf96bdd8bede2f7cd94e0adc8864586163cf22817075a44dc1f3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 01:43:48 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i93t-242f2646a1b85bf96bdd8bede2f7cd94e0adc8864586163cf22817075a44dc1f3 |
PageCount | 10 |
ParticipantIDs | ieee_primary_11022936 |
PublicationCentury | 2000 |
PublicationDate | 2025-April-28 |
PublicationDateYYYYMMDD | 2025-04-28 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-April-28 day: 28 |
PublicationDecade | 2020 |
PublicationTitle | Proceedings - IEEE VLSI Test Symposium |
PublicationTitleAbbrev | VTS |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0020540 |
Score | 2.2899468 |
Snippet | The increasing complexity of semiconductor design, along with stringent performance, power, and time-to-market requirements, has outpaced the capabilities of... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | AI for chip design Chip scale packaging Complexity theory Design automation Design methodology Electronic Design Automation (EDA) Hardware security Large language models Large Language Models (LLMs) Optimization Scalability Test pattern generators Very large scale integration |
Title | ChipMnd: LLMs for Agile Chip Design |
URI | https://ieeexplore.ieee.org/document/11022936 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFH7YnvTiVnEnoNeZzpJkEm9SLUXaIlilt5JVizAtOnPx15ukiwsI3sKDkA3yvpf3fS8AlyzRKVcuUpWFtJGD1CJiRvKIKJpoLSRJRGBbDGnvEd-NyXgpVg9aGGNMIJ-Z2DdDLl_PVO2fytqpD094ThvQcJHbQqy1jq489lhKgNOEt59GD5SkuWdvZSRe9fzxh0pwId1tGK4GXzBHXuO6krH6-FWX8d-z24HWl1oP3a_90C5smHIPtr4VGtyHi87LdD4o9RXq9wfvyAFVdP3s7gPk7egmsDhaMOrejjq9aPk9QjTleeVzudahGSpSyYi0nEqtmTTaZLZQmmOTCK0Yo5gw6kCXslnmi_EVRGCsVWrzA2iWs9IcAmJWWeN8dyFkgUOileRcGa5lphOR4yNo-eVO5osCGJPVSo__sJ_Apt91n3TJ2Ck0q7fanDnfXcnzcGafAhOWtw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60HtSLr4pvF_S6230lm3iTaqm6LYKr9Fby1CJsi-5e_PUm6cMHCN7CQEiGQOabzPdNAM5JKCMqTKbKM659A6mZTxSnPhI4lJJxFDLHtujj7mN6O0CDmVjdaWGUUo58pgI7dLV8ORa1fSprRTY9oQlehhVk1bhTudYiv7LoYyYCjkLaeioeMIoSy9-KUTCf--MXFRdEOhvQny8_5Y68BnXFA_HxqzPjv_e3Cc0vvZ53v4hEW7Ckym1Y_9ZqcAfO2i-jSa-UF16e9949A1W9y2dzI3jW7l05HkcTis510e76sw8S_BFNKlvN1QbPYBZxgrimmEtJuJIq1pmQNFUhk4IQnCKCDewSOo5tO74MsTSVItLJLjTKcan2wCNaaGWid8Z4lrpSK0qoUFTyWIYsSfehad0dTqYtMIZzTw_-sJ_Carfo5cP8pn93CGv2BGwJJiZH0KjeanVsInnFT9z5fQIVHpn_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+IEEE+VLSI+Test+Symposium&rft.atitle=ChipMnd%3A+LLMs+for+Agile+Chip+Design&rft.au=Firouzi%2C+Farshad&rft.au=Pan%2C+David+Z.&rft.au=Gu%2C+Jiaqi&rft.au=Farahani%2C+Bahar&rft.date=2025-04-28&rft.pub=IEEE&rft.eissn=2375-1053&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FVTS65138.2025.11022936&rft.externalDocID=11022936 |