ChipMnd: LLMs for Agile Chip Design

The increasing complexity of semiconductor design, along with stringent performance, power, and time-to-market requirements, has outpaced the capabilities of traditional Electronic Design Automation (EDA) methodologies. Conventional design workflows rely on manual intervention for critical tasks suc...

Full description

Saved in:
Bibliographic Details
Published inProceedings - IEEE VLSI Test Symposium pp. 1 - 10
Main Authors Firouzi, Farshad, Pan, David Z., Gu, Jiaqi, Farahani, Bahar, Chaudhuri, Jayeeta, Yin, Ziang, Ma, Pingchuan, Domanski, Peter, Chakrabarty, Krishnendu
Format Conference Proceeding
LanguageEnglish
Published IEEE 28.04.2025
Subjects
Online AccessGet full text
ISSN2375-1053
DOI10.1109/VTS65138.2025.11022936

Cover

Loading…
Abstract The increasing complexity of semiconductor design, along with stringent performance, power, and time-to-market requirements, has outpaced the capabilities of traditional Electronic Design Automation (EDA) methodologies. Conventional design workflows rely on manual intervention for critical tasks such as hardware description, synthesis optimization, and verification, leading to inefficiencies and scalability limitations. Large Language Models (LLMs) present a transformative approach by automating key stages of the design pipeline, enabling intelligent synthesis tuning, test generation, and security analysis. This paper introduces ChipMind, an LLM-driven framework comprising specialized agents and modules for digital and analog chip design. ChipMind integrates AI-driven methodologies to enhance design efficiency, accelerate prototyping, and optimize key design trade-offs, thereby addressing fundamental challenges in modern semiconductor development.
AbstractList The increasing complexity of semiconductor design, along with stringent performance, power, and time-to-market requirements, has outpaced the capabilities of traditional Electronic Design Automation (EDA) methodologies. Conventional design workflows rely on manual intervention for critical tasks such as hardware description, synthesis optimization, and verification, leading to inefficiencies and scalability limitations. Large Language Models (LLMs) present a transformative approach by automating key stages of the design pipeline, enabling intelligent synthesis tuning, test generation, and security analysis. This paper introduces ChipMind, an LLM-driven framework comprising specialized agents and modules for digital and analog chip design. ChipMind integrates AI-driven methodologies to enhance design efficiency, accelerate prototyping, and optimize key design trade-offs, thereby addressing fundamental challenges in modern semiconductor development.
Author Pan, David Z.
Yin, Ziang
Farahani, Bahar
Firouzi, Farshad
Chakrabarty, Krishnendu
Chaudhuri, Jayeeta
Ma, Pingchuan
Gu, Jiaqi
Domanski, Peter
Author_xml – sequence: 1
  givenname: Farshad
  surname: Firouzi
  fullname: Firouzi, Farshad
  organization: Arizona State University
– sequence: 2
  givenname: David Z.
  surname: Pan
  fullname: Pan, David Z.
  organization: University of Texas at Austin
– sequence: 3
  givenname: Jiaqi
  surname: Gu
  fullname: Gu, Jiaqi
  organization: Arizona State University
– sequence: 4
  givenname: Bahar
  surname: Farahani
  fullname: Farahani, Bahar
  organization: Shahid Beheshti University
– sequence: 5
  givenname: Jayeeta
  surname: Chaudhuri
  fullname: Chaudhuri, Jayeeta
  organization: Arizona State University
– sequence: 6
  givenname: Ziang
  surname: Yin
  fullname: Yin, Ziang
  organization: Arizona State University
– sequence: 7
  givenname: Pingchuan
  surname: Ma
  fullname: Ma, Pingchuan
  organization: Arizona State University
– sequence: 8
  givenname: Peter
  surname: Domanski
  fullname: Domanski, Peter
  organization: Arizona State University
– sequence: 9
  givenname: Krishnendu
  surname: Chakrabarty
  fullname: Chakrabarty, Krishnendu
  organization: Arizona State University
BookMark eNo1j8tKAzEUQK-iYFv7ByIB11Nzb97uytQXTHHh4LZkJkmN1GmZuPHvpairA2dx4EzhbNgPEeAa-QKRu9u39lUrFHZBnNRRETmhT2DujLNCoCKU0p7ChIRRFXIlLmBaygfnxJXkE7ip3_NhPYQ71jTrwtJ-ZMtt3kV29GwVS94Ol3Ce_K7E-R9n0D7ct_VT1bw8PtfLpspOfFUkKZGW2mNnVZec7kKwXQyRkumDk5H70FurpbIategTkUXDjfJShh6TmMHVbzbHGDeHMX_68Xvz_yR-AHvRQCA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/VTS65138.2025.11022936
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798331521448
EISSN 2375-1053
EndPage 10
ExternalDocumentID 11022936
Genre orig-research
GroupedDBID 6IE
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i93t-242f2646a1b85bf96bdd8bede2f7cd94e0adc8864586163cf22817075a44dc1f3
IEDL.DBID RIE
IngestDate Wed Aug 27 01:43:48 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-242f2646a1b85bf96bdd8bede2f7cd94e0adc8864586163cf22817075a44dc1f3
PageCount 10
ParticipantIDs ieee_primary_11022936
PublicationCentury 2000
PublicationDate 2025-April-28
PublicationDateYYYYMMDD 2025-04-28
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-April-28
  day: 28
PublicationDecade 2020
PublicationTitle Proceedings - IEEE VLSI Test Symposium
PublicationTitleAbbrev VTS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020540
Score 2.2899468
Snippet The increasing complexity of semiconductor design, along with stringent performance, power, and time-to-market requirements, has outpaced the capabilities of...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms AI for chip design
Chip scale packaging
Complexity theory
Design automation
Design methodology
Electronic Design Automation (EDA)
Hardware security
Large language models
Large Language Models (LLMs)
Optimization
Scalability
Test pattern generators
Very large scale integration
Title ChipMnd: LLMs for Agile Chip Design
URI https://ieeexplore.ieee.org/document/11022936
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFH7YnvTiVnEnoNeZzpJkEm9SLUXaIlilt5JVizAtOnPx15ukiwsI3sKDkA3yvpf3fS8AlyzRKVcuUpWFtJGD1CJiRvKIKJpoLSRJRGBbDGnvEd-NyXgpVg9aGGNMIJ-Z2DdDLl_PVO2fytqpD094ThvQcJHbQqy1jq489lhKgNOEt59GD5SkuWdvZSRe9fzxh0pwId1tGK4GXzBHXuO6krH6-FWX8d-z24HWl1oP3a_90C5smHIPtr4VGtyHi87LdD4o9RXq9wfvyAFVdP3s7gPk7egmsDhaMOrejjq9aPk9QjTleeVzudahGSpSyYi0nEqtmTTaZLZQmmOTCK0Yo5gw6kCXslnmi_EVRGCsVWrzA2iWs9IcAmJWWeN8dyFkgUOileRcGa5lphOR4yNo-eVO5osCGJPVSo__sJ_Apt91n3TJ2Ck0q7fanDnfXcnzcGafAhOWtw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60HtSLr4pvF_S6230lm3iTaqm6LYKr9Fby1CJsi-5e_PUm6cMHCN7CQEiGQOabzPdNAM5JKCMqTKbKM659A6mZTxSnPhI4lJJxFDLHtujj7mN6O0CDmVjdaWGUUo58pgI7dLV8ORa1fSprRTY9oQlehhVk1bhTudYiv7LoYyYCjkLaeioeMIoSy9-KUTCf--MXFRdEOhvQny8_5Y68BnXFA_HxqzPjv_e3Cc0vvZ53v4hEW7Ckym1Y_9ZqcAfO2i-jSa-UF16e9949A1W9y2dzI3jW7l05HkcTis510e76sw8S_BFNKlvN1QbPYBZxgrimmEtJuJIq1pmQNFUhk4IQnCKCDewSOo5tO74MsTSVItLJLjTKcan2wCNaaGWid8Z4lrpSK0qoUFTyWIYsSfehad0dTqYtMIZzTw_-sJ_Carfo5cP8pn93CGv2BGwJJiZH0KjeanVsInnFT9z5fQIVHpn_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+-+IEEE+VLSI+Test+Symposium&rft.atitle=ChipMnd%3A+LLMs+for+Agile+Chip+Design&rft.au=Firouzi%2C+Farshad&rft.au=Pan%2C+David+Z.&rft.au=Gu%2C+Jiaqi&rft.au=Farahani%2C+Bahar&rft.date=2025-04-28&rft.pub=IEEE&rft.eissn=2375-1053&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FVTS65138.2025.11022936&rft.externalDocID=11022936