Anatomically correct testbed hand control: Muscle and joint control strategies

Human hands are capable of many dexterous grasping and manipulation tasks. To understand human levels of dexterity and to achieve it with robotic hands, we constructed an anatomically correct testbed (ACT) hand which allows for the investigation of the biomechanical features and neural control strat...

Full description

Saved in:
Bibliographic Details
Published in2009 IEEE International Conference on Robotics and Automation pp. 4416 - 4422
Main Authors Deshpande, A.D., Ko, J., Fox, D., Matsuoka, Y.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2009
Subjects
Online AccessGet full text
ISBN1424427886
9781424427888
ISSN1050-4729
DOI10.1109/ROBOT.2009.5152542

Cover

More Information
Summary:Human hands are capable of many dexterous grasping and manipulation tasks. To understand human levels of dexterity and to achieve it with robotic hands, we constructed an anatomically correct testbed (ACT) hand which allows for the investigation of the biomechanical features and neural control strategies of the human hand. This paper focuses on developing control strategies for the index finger motion of the ACT Hand. A direct muscle position control and a force-optimized joint control are implemented as building blocks and tools for comparisons with future biological control approaches. We show how Gaussian process regression techniques can be used to determine the relationships between the muscle and joint motions in both controllers. Our experiments demonstrate that the direct muscle position controller allows for accurate and fast position tracking, while the force-optimized joint controller allows for exploitation of actuation redundancy in the finger critical for this redundant system. Furthermore, a comparison between Gaussian processes and least squares regression method shows that Gaussian processes provide better parameter estimation and tracking performance. This first control investigation on the ACT hand opens doors to implement biological strategies observed in humans and achieve the ultimate human-level dexterity.
ISBN:1424427886
9781424427888
ISSN:1050-4729
DOI:10.1109/ROBOT.2009.5152542