Mobility-aware spatial interference cancellation for mobile ad hoc networks

Interference limits the throughput of a mobile ad hoc network (MANET). Multi-antennas can be employed at a node for interference cancellation besides attaining array gain. Spatial interference cancellation requires each node to estimate the interference channels, which is potentially inaccurate due...

Full description

Saved in:
Bibliographic Details
Published in2010 International Conference on Information and Communication Technology Convergence (ICTC) pp. 57 - 62
Main Authors Jihong Park, Kaibin Huang, Sungyoon Cho, Dongku Kim
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2010
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Interference limits the throughput of a mobile ad hoc network (MANET). Multi-antennas can be employed at a node for interference cancellation besides attaining array gain. Spatial interference cancellation requires each node to estimate the interference channels, which is potentially inaccurate due to node mobility. As a result, maximizing the network capacity requires optimally allocating spatial degrees of freedom (DoF) to cancel interference and enhance link reliability based on the node mobility. This paper addresses this issue for a MANET with Poisson distributed transmitters and employing zero-forcing beam for spatial interference cancellation. Specifically, the residual interference power for each node from partially canceled interferers is characterized as a function of Doppler frequency and the number of DoF for interference cancellation is shown to decrease with the Doppler frequency. The adaption of spatial interference cancellation to mobility is observed to significantly improve the network performance in terms of both outage probability and capacity compared with the case without adaptation.
ISBN:9781424498062
1424498066
ISSN:2162-1233
DOI:10.1109/ICTC.2010.5674722