Transfer of Supervision for Improved Address Standardization
Address Cleansing is very challenging, particularly for geographies with variability in writing addresses. Supervised learners can be easily trained for different data sources. However, training requires labeling large corpora for each data source which is time consuming and labor intensive to creat...
Saved in:
Published in | 2010 20th International Conference on Pattern Recognition pp. 2178 - 2181 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.08.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Address Cleansing is very challenging, particularly for geographies with variability in writing addresses. Supervised learners can be easily trained for different data sources. However, training requires labeling large corpora for each data source which is time consuming and labor intensive to create. We propose a method to automatically transfer supervision from a given labeled source to a target unlabeled source using a hierarchical dirichlet process. Each dirichlet process models data from one source. The shared component distribution across these dirichlet processes captures the semantic relation between data sources. A feature projection on the component distributions from multiple sources is used to transfer supervision. |
---|---|
ISBN: | 1424475422 9781424475421 |
ISSN: | 1051-4651 2831-7475 |
DOI: | 10.1109/ICPR.2010.533 |