An Object Segmentation Method Based on Image Contour and Local Convexity for 3D Vision Guided Bin-Picking Applications
Segmentation of targets from a set of disordered objects is always plays a significant role in the field of computer vision. In this paper, a novel method of object segmentation of scattered parts, of which dense and accurate 3D point cloud can be obtained by visual measurement technology of the str...
Saved in:
Published in | 2018 IEEE International Conference on Real-time Computing and Robotics (RCAR) pp. 474 - 478 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.08.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Segmentation of targets from a set of disordered objects is always plays a significant role in the field of computer vision. In this paper, a novel method of object segmentation of scattered parts, of which dense and accurate 3D point cloud can be obtained by visual measurement technology of the structured light, is proposed and confirmed to be valid without training large datasets. The randomly placed parts are almost separated completely after two dimensional image processing and point cloud segmentation using local convex convexity connections. The segmentation results can guide the grabbing work of robot arms in the bin-picking system. |
---|---|
DOI: | 10.1109/RCAR.2018.8621715 |