Near real-time atrocity event coding
In recent years, mass atrocities, terrorism, and political unrest have caused much human suffering. Thousands of innocent lives have been lost to these events. With the help of advanced technologies, we can now dream of a tool that uses machine learning and natural language processing (NLP) techniqu...
Saved in:
Published in | 2016 IEEE Conference on Intelligence and Security Informatics (ISI) pp. 139 - 144 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.09.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In recent years, mass atrocities, terrorism, and political unrest have caused much human suffering. Thousands of innocent lives have been lost to these events. With the help of advanced technologies, we can now dream of a tool that uses machine learning and natural language processing (NLP) techniques to warn of such events. Detecting atrocities demands structured event data that contain metadata, with multiple fields and values (e.g. event date, victim, perpetrator). Traditionally, humans apply common sense and encode events from news stories but this process is slow, expensive, and ambiguous. To accelerate it, we use machine coding to generate an encoded event. In this paper, we develop a near-real-time supervised machine coding technique with an external knowledge base, WordNet, to generate a structured event. We design a Spark-based distributed framework with a web scraper to gather news reports periodically, process, and generate events. We use Spark to reduce the performance bottleneck while processing raw text news using CoreNLP. |
---|---|
DOI: | 10.1109/ISI.2016.7745457 |