A monolithically-integrated chip-to-chip optical link in bulk CMOS

A silicon-photonic link is monolithically-integrated in a bulk CMOS process for the first time. Deep-trench isolation enables polySi waveguide integration. PolySi resonant detectors remove the need for Ge integration. Split-diode design enables half-rate receivers, mitigating transistor speed limita...

Full description

Saved in:
Bibliographic Details
Published in2014 Symposium on VLSI Circuits Digest of Technical Papers pp. 1 - 2
Main Authors Sun, C., Georgas, M., Orcutt, J. S., Moss, B. R., Chen, Y.-H, Shainline, J., Wade, M., Mehta, K., Nammari, K., Timurdogan, E., Miller, D., Tehar-Zahav, O., Sternberg, Z., Leu, J. C., Chong, J., Bafrali, R., Sandhu, G., Watts, M., Meade, R., Popovic, M. A., Ram, R. J., Stojanovic, V.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A silicon-photonic link is monolithically-integrated in a bulk CMOS process for the first time. Deep-trench isolation enables polySi waveguide integration. PolySi resonant detectors remove the need for Ge integration. Split-diode design enables half-rate receivers, mitigating transistor speed limitations. An on-chip feedback loop locks the resonant defect detector to the laser wavelength, combating thermal upset. The 5 m optical link achieves 5 Gb/s at 3 pJ/b electrical and 13 pJ/b optical energy, in 0.18 μm (100 ps FO4) bulk CMOS memory periphery process.
ISBN:9781479933273
1479933279
ISSN:2158-5601
2158-5636
DOI:10.1109/VLSIC.2014.6858377