Identifying Predictive Regions from fMRI with TV-L1 Prior
Decoding, i.e. predicting stimulus related quantities from functional brain images, is a powerful tool to demonstrate differences between brain activity across conditions. However, unlike standard brain mapping, it offers no guaranties on the localization of this information. Here, we consider decod...
Saved in:
Published in | 2013 International Workshop on Pattern Recognition in Neuroimaging pp. 17 - 20 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Decoding, i.e. predicting stimulus related quantities from functional brain images, is a powerful tool to demonstrate differences between brain activity across conditions. However, unlike standard brain mapping, it offers no guaranties on the localization of this information. Here, we consider decoding as a statistical estimation problem and show that injecting a spatial segmentation prior leads to unmatched performance in recovering predictive regions. Specifically, we use ℓ 1 -penalization to set voxels to zero and Total-Variation (TV) penalization to segment regions. Our contribution is two-fold. On the one hand, we show via extensive experiments that, amongst a large selection of decoding and brain-mapping strategies, TV+ℓ 1 leads to best region recovery. On the other hand, we consider implementation issues related to this estimator. To tackle efficiently this joint prediction-segmentation problem we introduce a fast optimization algorithm based on a primal-dual approach. We also tackle automatic setting of hyper-parameters and fast computation of image operation on the irregular masks that arise in brain imaging. |
---|---|
DOI: | 10.1109/PRNI.2013.14 |