Reliability investigations on the programming currents of 28nm metal e-Fuse
The reliability performance of 28nm metal e-Fuse programmed with different current is investigated. High temperature stress (HTS) or temperature cycling (TC) may cause the shift of metal-e-fuse element resistance and shape. In this paper, we find that 28nm metal e-Fuse programming with low current r...
Saved in:
Published in | 2017 China Semiconductor Technology International Conference (CSTIC) pp. 1 - 3 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.03.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The reliability performance of 28nm metal e-Fuse programmed with different current is investigated. High temperature stress (HTS) or temperature cycling (TC) may cause the shift of metal-e-fuse element resistance and shape. In this paper, we find that 28nm metal e-Fuse programming with low current reliability performance is more stable than metal e-Fuse programming with high current; Resistance shift was only observed on fuses programmed in the over-programmed mode. In addition, the SEM profile of metal e-Fuse programming with low current is obviously better than high current SEM profile. |
---|---|
DOI: | 10.1109/CSTIC.2017.7919737 |