Inverse extreme learning machine for learning with label proportions

In large-scale learning problem, the scalability of learning algorithms is usually the key factor affecting the algorithm practical performance, which is determined by both the time complexity of the learning algorithms and the amount of supervision information (i.e., labeled data). Learning with la...

Full description

Saved in:
Bibliographic Details
Published in2017 IEEE International Conference on Big Data (Big Data) pp. 576 - 585
Main Authors Limeng Cui, Jiawei Zhang, Zhensong Chen, Yong Shi, Yu, Philip S.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In large-scale learning problem, the scalability of learning algorithms is usually the key factor affecting the algorithm practical performance, which is determined by both the time complexity of the learning algorithms and the amount of supervision information (i.e., labeled data). Learning with label proportions (LLP) is a new kind of machine learning problem which has drawn much attention in recent years. Different from the well-known supervised learning, LLP can estimate a classifier from groups of weakly labeled data, where only the positive/negative class proportions of each group are known. Due to its weak requirements for the input data, LLP presents a variety of real-world applications in almost all the fields involving anonymous data, like computer vision, fraud detection and spam filtering. However, even through the required labeled data is of a very small amount, LLP still suffers from the long execution time a lot due to the high time complexity of the learning algorithm itself. In this paper, we propose a very fast learning method based on inversing output scaling process and extreme learning machine, namely Inverse Extreme Learning Machine (IELM), to address the above issues. IELM can speed up the training process by order of magnitudes for large datasets, while achieving highly competitive classification accuracy with the existing methods at the same time. Extensive experiments demonstrate the significant speedup of the proposed method. We also demonstrate the feasibility of IELM with a case study in real-world setting: modeling image attributes based on ImageNet Object Attributes dataset.
DOI:10.1109/BigData.2017.8257973