Cost and power/performance optimized 20nm SoC technology for advanced mobile devices
A cost competitive 20nm technology node is described that enabled industry-first 20nm cellular modem chip with 2× peak data rates vs 28nm, and 2× carrier aggregation. Process and design enhancements for layout context optimization, and continuous process improvements resulted in 18% boost in circuit...
Saved in:
Published in | 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers pp. 1 - 2 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A cost competitive 20nm technology node is described that enabled industry-first 20nm cellular modem chip with 2× peak data rates vs 28nm, and 2× carrier aggregation. Process and design enhancements for layout context optimization, and continuous process improvements resulted in 18% boost in circuit performance while simultaneously achieving >30% power reduction. 3 mask local interconnect and 64nm double patterning lower level metals - with yield-friendly single color pitch of 95nm and M1 special constructs with 90nm (=gate pitch) single color pitch for cell abutment - were used for achieving ~2× gate density. Single patterning 80nm pitch metal for routing levels was optimized for both density and performance. Active/passive device and double pattern metal mask count was optimized to reach process should-cost goals. Resulting technology provides cost reduction vs 28 HKMG per close to historical trend, and also cost-competitiveness vs 28 PolySiON. Leveraging of yield learning of this common back-end metallization results in up to 6 month pull-in of 16nm Finfet node yield ramp. |
---|---|
ISBN: | 9781479933310 1479933317 |
ISSN: | 0743-1562 |
DOI: | 10.1109/VLSIT.2014.6894414 |