Low-complexity high throughput VLSI architecture of soft-output ML MIMO detector
In this paper a VLSI architecture of a high throughput and high performance soft-output (SO) MIMO detector (the recently presented Layered ORthogonal Lattice Detector, LORD) is presented. The baseline implementation includes optimal (i.e. maximum-likelihood - ML - in the max-log sense) SO generation...
Saved in:
Published in | 2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010) pp. 1396 - 1401 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.03.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper a VLSI architecture of a high throughput and high performance soft-output (SO) MIMO detector (the recently presented Layered ORthogonal Lattice Detector, LORD) is presented. The baseline implementation includes optimal (i.e. maximum-likelihood - ML - in the max-log sense) SO generation. A reduced complexity variant of the SO generation stage is also described. To the best of the authors' knowledge, the proposed architecture is the first VLSI implementation of a max-log ML MIMO detector which includes QR decomposition and SO generation, having the latter a deterministic very high throughput thanks to a fully parallelizable structure, and parameterizability in terms of both the number of transmit and receive antennas, and the supported modulation orders. The two designs achieve a very high throughput making them particularly suitable for MIMO-OFDM systems like e.g. IEEE 802.11n WLANs: the most demanding requirements are satisfied at a reasonable cost of area and power consumption. |
---|---|
ISBN: | 1424470544 9781424470549 |
ISSN: | 1530-1591 1558-1101 |
DOI: | 10.1109/DATE.2010.5457031 |