Classification of the emotional states based on the EEG signal processing
The paper proposes a method for the classification of EEG signal based on machine learning methods. We analyzed the data from an EEG experiment consisting of affective picture stimuli presentation, and tested automatic recognition of the individual emotional states from the EEG signal using Bayes cl...
Saved in:
Published in | IEEE journal of biomedical and health informatics pp. 1 - 4 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.11.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The paper proposes a method for the classification of EEG signal based on machine learning methods. We analyzed the data from an EEG experiment consisting of affective picture stimuli presentation, and tested automatic recognition of the individual emotional states from the EEG signal using Bayes classifier. The mean accuracy was about 75 percent, but we were not able to select universal features for classification of all subjects, because of inter-individual differences in the signal. We also identified correlation between the classification error and the extroversion-introversion personality trait measured by EPQ-R test. Introverts have lower excitation threshold so we are able to detect the differences in their EEG activity with better accuracy. Furthermore, the use of Kohonen's self-organizing map for visualization is suggested and demonstrated on one subject. |
---|---|
ISSN: | 2168-2194 |
DOI: | 10.1109/ITAB.2009.5394429 |