A systematic comparison of hard- and soft-switching topologies for inductive power transfer systems
This paper provides a comparison of four series-series compensated inductive power transfer systems for contact-less vehicle charging. A systematic comparison between hard-and soft-switching topologies, as well as different operating frequencies, is performed and the impacts on system efficiency and...
Saved in:
Published in | 2014 4th International Electric Drives Production Conference (EDPC) pp. 1 - 8 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.09.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper provides a comparison of four series-series compensated inductive power transfer systems for contact-less vehicle charging. A systematic comparison between hard-and soft-switching topologies, as well as different operating frequencies, is performed and the impacts on system efficiency and complexity are assessed in detail. In a holistic design process each system is individually optimized for a charging power of 3kW and a variable air gap from 100mm to 170mm at a coil diameter of 500mm. It is shown that the hard-switching topologies are highly attractive in the considered power range even with state of the art semiconductors. By introducing a dual-side controlled topology a superior system efficiency is demonstrated at an operating frequency of 35 kHz. |
---|---|
ISBN: | 9781479950089 1479950084 |
DOI: | 10.1109/EDPC.2014.6984420 |