DSP design using VLIW architecture
Programmable digital signal processors (pDSPs) are microprocessors that are specialized to perform well in digital signal processing intensive applications. A standard microprocessor can do most pDSP operations. However, the pDSP chip has better ability to perform number crunching algorithms in real...
Saved in:
Published in | 2000 IEEE International Conference on Semiconductor Electronics Proceedings pp. 160 - 167 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2000
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Programmable digital signal processors (pDSPs) are microprocessors that are specialized to perform well in digital signal processing intensive applications. A standard microprocessor can do most pDSP operations. However, the pDSP chip has better ability to perform number crunching algorithms in real-time, and pDSPs are highly flexible because they can be reprogrammed. The major objective of this research is to design and implement a general-purpose programmable DSP core (digital signal processor core). The architecture of the pDSP core must be designed in such a way that parallel processing can be exploited and computational units can be integrated into the core with ease. The pDSP designed is a fixed-point DSP based on a very long instruction word (VLIW) architecture. One way to overcome the performance limitation is to use field programmable gate array (FPGA) technology, a technology which gives the designer a higher degree of parallelism and ease of pDSP design. |
---|---|
ISBN: | 9780780364301 0780364309 |
DOI: | 10.1109/SMELEC.2000.932456 |