TCAD Framework for HCD Kinetics in Low VD Devices Spanning Full VG/VD Space

The time kinetics of hot carrier degradation (HCD) is modeled using a reaction diffusion drift (RDD) framework. It is incorporated into Sentaurus Device TCAD and validated using conduction mode HCD data in n- and p-channel MOSFETs and FinFETs. RDD-enabled TCAD calculates carrier-energy-initiated gen...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on electron devices Vol. 67; no. 11; pp. 4749 - 4756
Main Authors Sharma, Uma, Duan, Meng, Diwakar, Himanshu, Thakor, Karansingh, Wong, Hiu Yung, Motzny, Steve, Dolgos, Denis, Mahapatra, Souvik
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The time kinetics of hot carrier degradation (HCD) is modeled using a reaction diffusion drift (RDD) framework. It is incorporated into Sentaurus Device TCAD and validated using conduction mode HCD data in n- and p-channel MOSFETs and FinFETs. RDD-enabled TCAD calculates carrier-energy-initiated generation of interface traps (<inline-formula> <tex-math notation="LaTeX">\Delta {N}_{\text {IT}} </tex-math></inline-formula>) and the impact of the resulting localized charges on device parametric drift. HCD at various gate (<inline-formula> <tex-math notation="LaTeX">{V}_{\text {G}} </tex-math></inline-formula>) and drain (<inline-formula> <tex-math notation="LaTeX">{V}_{\text {D}} </tex-math></inline-formula>) biases spanning various modes (<inline-formula> <tex-math notation="LaTeX">{V}_{\text {G}}\le </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">>{V}_{\text {D}} </tex-math></inline-formula>) are simulated for low stress <inline-formula> <tex-math notation="LaTeX">{V}_{\text {D}} </tex-math></inline-formula> (< 3 V). The self-heating (SH)-effect-induced temperature (<inline-formula> <tex-math notation="LaTeX">\textit {T} </tex-math></inline-formula>) increase is invoked for FinFETs. Data from various experiments are analyzed and a wide range of power-law time kinetics slope (<inline-formula> <tex-math notation="LaTeX">{n} </tex-math></inline-formula>) is explained.
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2020.3021360