Episodic sampling: Towards energy-efficient patient monitoring with wearable sensors

Energy efficiency presents a critical design challenge in wireless, wearable sensor technology, mainly because of the associated diagnostic objectives required in each monitoring application. In order to maximize the operating lifetime during real-life monitoring and maintain sufficient classificati...

Full description

Saved in:
Bibliographic Details
Published in2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society Vol. 2009; pp. 6901 - 6905
Main Authors Au, L.K., Batalin, M.A., Stathopoulos, T., Bui, A.A.T., Kaiser, W.J.
Format Conference Proceeding Journal Article
LanguageEnglish
Published United States IEEE 01.01.2009
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Energy efficiency presents a critical design challenge in wireless, wearable sensor technology, mainly because of the associated diagnostic objectives required in each monitoring application. In order to maximize the operating lifetime during real-life monitoring and maintain sufficient classification accuracy, the wearable sensors require hardware support that allows dynamic power control on the sensors and wireless interfaces as well as monitoring algorithms to control these components intelligently. This paper introduces a context-aware sensing technique known as episodic sampling - a method of performing context classification only at specific time instances. Based on additive-increase/multiplicative-decrease (AIMD), episodic sampling demonstrates an energy reduction of 85 percent with a loss of only 5 percent in classification accuracy in our experiment.
ISSN:1094-687X
1557-170X
1558-4615
DOI:10.1109/IEMBS.2009.5333615