Texture-based Error Analysis for Image Super-Resolution
Evaluation practices for image super-resolution (SR) use a single-value metric, the PSNR or SSIM, to determine model performance. This provides little insight into the source of errors and model behavior. Therefore, it is beneficial to move beyond the conventional approach and reconceptualize evalua...
Saved in:
Published in | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) Vol. 2022; pp. 2108 - 2117 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
United States
IEEE
01.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Evaluation practices for image super-resolution (SR) use a single-value metric, the PSNR or SSIM, to determine model performance. This provides little insight into the source of errors and model behavior. Therefore, it is beneficial to move beyond the conventional approach and reconceptualize evaluation with interpretability as our main priority. We focus on a thorough error analysis from a variety of perspectives. Our key contribution is to leverage a texture classifier, which enables us to assign patches with semantic labels, to identify the source of SR errors both globally and locally. We then use this to determine (a) the semantic alignment of SR datasets, (b) how SR models perform on each label, (c) to what extent high-resolution (HR) and SR patches semantically correspond, and more. Through these different angles, we are able to highlight potential pitfalls and blindspots. Our overall investigation highlights numerous unexpected insights. We hope this work serves as an initial step for debugging blackbox SR networks. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1063-6919 1063-6919 2575-7075 |
DOI: | 10.1109/CVPR52688.2022.00216 |