Networks for Joint Affine and Non-Parametric Image Registration

We introduce an end-to-end deep-learning framework for 3D medical image registration. In contrast to existing approaches, our framework combines two registration methods: an affine registration and a vector momentum-parameterized stationary velocity field (vSVF) model. Specifically, it consists of t...

Full description

Saved in:
Bibliographic Details
Published inProceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) Vol. 2019; pp. 4219 - 4228
Main Authors Shen, Zhengyang, Han, Xu, Xu, Zhenlin, Niethammer, Marc
Format Conference Proceeding Journal Article
LanguageEnglish
Published United States IEEE 01.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We introduce an end-to-end deep-learning framework for 3D medical image registration. In contrast to existing approaches, our framework combines two registration methods: an affine registration and a vector momentum-parameterized stationary velocity field (vSVF) model. Specifically, it consists of three stages. In the first stage, a multi-step affine network predicts affine transform parameters. In the second stage, we use a U-Net-like network to generate a momentum, from which a velocity field can be computed via smoothing. Finally, in the third stage, we employ a self-iterable map-based vSVF component to provide a non-parametric refinement based on the current estimate of the transformation map. Once the model is trained, a registration is completed in one forward pass. To evaluate the performance, we conducted longitudinal and cross-subject experiments on 3D magnetic resonance images (MRI) of the knee of the Osteoarthritis Initiative (OAI) dataset. Results show that our framework achieves comparable performance to state-of-the-art medical image registration approaches, but it is much faster, with a better control of transformation regularity including the ability to produce approximately symmetric transformations, and combining affine as well as non-parametric registration.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1063-6919
1063-6919
2575-7075
DOI:10.1109/CVPR.2019.00435