Using PVA and TPGS as combined emulsifier in nanoprecipitation method improves characteristics and anticancer activity of ibuprofen loaded PLGA nanoparticles

In the preparation of nanoparticles (NPs) by the nanoprecipitation method, emulsifiers play a key role for NPs' characteristics. The present study aimed to investigate the combined emulsifier effect on ibuprofen loaded poly(lactic-co-glycolic acid) (PLGA) NPs' characteristics and anticance...

Full description

Saved in:
Bibliographic Details
Published inPharmazie Vol. 72; no. 9; p. 525
Main Authors Sahin, A, Spiroux, F, Guedon, I, Arslan, F B, Sarcan, E T, Ozkan, T, Colak, N, Yuksel, S, Ozdemir, S, Ozdemir, B, Akbas, S, Ultav, G, Aktas, Y, Capan, Y
Format Journal Article
LanguageEnglish
Published Germany 01.09.2017
Online AccessGet more information

Cover

Loading…
More Information
Summary:In the preparation of nanoparticles (NPs) by the nanoprecipitation method, emulsifiers play a key role for NPs' characteristics. The present study aimed to investigate the combined emulsifier effect on ibuprofen loaded poly(lactic-co-glycolic acid) (PLGA) NPs' characteristics and anticancer activity. Ibuprofen loaded PLGA NPs were prepared by nanoprecipitation using different concentrations of PVA (poly(vinyl alcohol)) or PVA-TPGS (d-α-tocopherol polyethylene glycol 1000 succinate) combination as emulsifier. It was found that encapsulation efficiencies of NPs varied between 17.9 and 41.9 % and the highest encapsulation efficiency was obtained with 0.5% PVA + 0.1% TPGS (coded as PLGA PVA/TPGS NPs). PLGA PVA/TPGS NPs were characterized and compared with PLGA PVA NPs, which was obtained by 0.5% PVA alone. Polydispersity index of PLGA PVA/TPGS and PLGA PVA NPs were found to be 0.08 and 0.15, respectively. Incorporation of TPGS with PVA slightly decreased the initial ibuprofen release. Transmission electron microscopy analyses demonstrated a nearly uniform particle size distribution and spherical particle shape of the PLGA PVA/TPGS NPs. Additionally, PLGA PVA/TPGS NPs were significantly more cytotoxic than PLGA PVA NPs on the MCF-7 (human breast adenocarcinoma cells) and Caco-2 (human epithelial colorectal adenocarcinoma) cells (p<0.05). Also PLGA PVA/TPGS NPs were not cytotoxic on normal cells (L929, mouse healthy fibroblast cells) (p>0.05). In conclusion, these results indicated that using a combination of TPGS and PVA as an emulsifier in nanoprecipitation could be a promising approach for preparing ibuprofen loaded PLGA NPs because of their improved characteristics and anticancer activity.
ISSN:0031-7144
DOI:10.1691/ph.2017.7015