Hierarchical β-Mo2C Nanotubes Organized by Ultrathin Nanosheets as a Highly Efficient Electrocatalyst for Hydrogen Production
Production of hydrogen by electrochemical water splitting has been hindered by the high cost of precious metal catalysts, such as Pt, for the hydrogen evolution reaction (HER). In this work, novel hierarchical β‐Mo2C nanotubes constructed from porous nanosheets have been fabricated and investigated...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 54; no. 51; pp. 15395 - 15399 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
14.12.2015
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Production of hydrogen by electrochemical water splitting has been hindered by the high cost of precious metal catalysts, such as Pt, for the hydrogen evolution reaction (HER). In this work, novel hierarchical β‐Mo2C nanotubes constructed from porous nanosheets have been fabricated and investigated as a high‐performance and low‐cost electrocatalyst for HER. An unusual template‐engaged strategy has been utilized to controllably synthesize Mo‐polydopamine nanotubes, which are further converted into hierarchical β‐Mo2C nanotubes by direct carburization at high temperature. Benefitting from several structural advantages including ultrafine primary nanocrystallites, large exposed surface, fast charge transfer, and unique tubular structure, the as‐prepared hierarchical β‐Mo2C nanotubes exhibit excellent electrocatalytic performance for HER with small overpotential in both acidic and basic conditions, as well as remarkable stability.
From the same sheet: Hierarchical β‐Mo2C nanotubes constructed of ultrathin nanosheets are designed and synthesized. Benefitting from ultra‐small primary nanocrystallites, a large exposed surface, fast charge transfer, and unique tubular structure, the as‐prepared hierarchical β‐Mo2C nanotubes exhibit excellent electrocatalytic performance for the hydrogen evolution reaction. |
---|---|
Bibliography: | ArticleID:ANIE201508715 istex:C31EB864A1674A7DC889383F2D76DA55D554E2CF ark:/67375/WNG-FRCW5R8W-7 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.201508715 |