A New Wavelet-Based Algorithm for Compression of Emg Signals
Despite the growing interest in the transmission and storage of electromyographic signals for long periods of time, only a few studies dealt with the compression of these signals. In this article we propose a novel algorithm for EMG signal compression using the wavelet transform. For EMG signals acq...
Saved in:
Published in | 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society Vol. 2007; pp. 1554 - 1557 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2007
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Despite the growing interest in the transmission and storage of electromyographic signals for long periods of time, only a few studies dealt with the compression of these signals. In this article we propose a novel algorithm for EMG signal compression using the wavelet transform. For EMG signals acquired during isometric contractions, the proposed algorithm provided compression factors ranging from 50 to 90%, with an average PRD ranging from 1.4 to 7.5%. The proposed method uses a new scheme for normalizing the wavelet coefficients. The wavelet coefficients are quantized using dynamic bit allocation, which is carried out by a Kohonen Neural Network. After the quantization, these coefficients are encoded using an arithmetic encoder. The compression results using the proposed algorithm were compared to other algorithms based on the wavelet transform. The proposed algorithm had a better performance in compression ratio and fidelity of the reconstructed signal. |
---|---|
ISBN: | 9781424407873 1424407877 |
ISSN: | 1094-687X 1557-170X 1558-4615 |
DOI: | 10.1109/IEMBS.2007.4352600 |