Reconstructing Retinal Visual Images from 3T fMRI Data Enhanced by Unsupervised Learning

The reconstruction of human visual inputs from brain activity, particularly through functional Magnetic Resonance Imaging (fMRI), holds promising avenues for unraveling the mechanisms of the human visual system. Despite the significant strides made by deep learning methods in improving the quality a...

Full description

Saved in:
Bibliographic Details
Published inProceedings (International Symposium on Biomedical Imaging) Vol. 2024; pp. 1 - 5
Main Authors Xiong, Yujian, Zhu, Wenhui, Lu, Zhong-Lin, Wang, Yalin
Format Conference Proceeding Journal Article
LanguageEnglish
Published United States IEEE 01.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The reconstruction of human visual inputs from brain activity, particularly through functional Magnetic Resonance Imaging (fMRI), holds promising avenues for unraveling the mechanisms of the human visual system. Despite the significant strides made by deep learning methods in improving the quality and interpretability of visual reconstruction, there remains a substantial demand for high-quality, long-duration, subject-specific 7-Tesla fMRI experiments. The challenge arises in integrating diverse smaller 3-Tesla datasets or accommodating new subjects with brief and low-quality fMRI scans. In response to these constraints, we propose a novel framework that generates enhanced 3T fMRI data through an unsupervised Generative Adversarial Network (GAN), leveraging unpaired training across two distinct fMRI datasets in 7T and 3T, respectively. This approach aims to overcome the limitations of the scarcity of high-quality 7-Tesla data and the challenges associated with brief and low-quality scans in 3-Tesla experiments. In this paper, we demonstrate the reconstruction capabilities of the enhanced 3T fMRI data, highlighting its proficiency in generating superior input visual images compared to data-intensive methods trained and tested on a single subject.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1945-7928
1945-8452
DOI:10.1109/ISBI56570.2024.10635641