Efficacy of annealing and fabrication parameters on photo-response of SiGe in TiO2 matrix
SiGe nanoparticles dispersed in a dielectric matrix exhibit properties different from those of bulk and have shown great potential in devices for application in advanced optoelectronics. Annealing is a common fabrication step used to increase crystallinity and to form nanoparticles in such a system....
Saved in:
Published in | Nanotechnology Vol. 30; no. 36; p. 365604 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
06.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | SiGe nanoparticles dispersed in a dielectric matrix exhibit properties different from those of bulk and have shown great potential in devices for application in advanced optoelectronics. Annealing is a common fabrication step used to increase crystallinity and to form nanoparticles in such a system. A frequent downside of such annealing treatment is the formation of insulating SiO2 layer at the matrix/SiGe interface, degrading the optical properties of the structure. An annealing process that could bypass this downside would therefore be of great interest. In this work, a short-time furnace annealing of a SiGe/TiO2 system is applied to obtain SiGe nanoparticles without formation of the undesired SiO2 layer between the dielectric matrix (TiO2) and SiGe. The structures were prepared by depositing alternate layers of TiO2 and SiGe films, using direct-current magnetron sputtering technique. A wide range spectral response with a response-threshold up to ∼1300 nm was obtained, accompanied with an increase in photo-response of more than two-orders of magnitude. Scanning electron microscopy, transmission electron microscopy, energy-dispersive x-ray spectroscopy and grazing incidence x-ray diffraction were used to analyze the morphological changes in respective structures. Photoconductive properties were studied by measuring photocurrent spectra using applied dc-voltages at various temperatures. |
---|---|
Bibliography: | NANO-121008.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0957-4484 1361-6528 1361-6528 |
DOI: | 10.1088/1361-6528/ab260e |