Pseudomorphy, surface alloys and the role of elementary clusters on the domain orientations in the Cu/Al13Co4(100) system

We have used the pseudo-tenfold surface of the orthorhombic Al(13)Co(4) crystal as a template for the adsorption of Cu thin films of various thicknesses deposited at different temperatures. This study has been carried out by means of low energy electron diffraction (LEED), scanning tunnelling micros...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Condensed matter Vol. 23; no. 43; p. 435009
Main Authors Addou, R, Shukla, A K, de Weerd, M-C, Gille, P, Widmer, R, Gröning, O, Fournée, V, Dubois, J-M, Ledieu, J
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 02.11.2011
Institute of Physics
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We have used the pseudo-tenfold surface of the orthorhombic Al(13)Co(4) crystal as a template for the adsorption of Cu thin films of various thicknesses deposited at different temperatures. This study has been carried out by means of low energy electron diffraction (LEED), scanning tunnelling microscopy (STM), x-ray photoelectron spectroscopy (XPS) and x-ray photoelectron diffraction (XPD). From 300 to 573 K, Cu adatoms grow pseudomorphically up to one monolayer. At 300 K, the β-Al(Cu, Co) phase appears for coverages greater than one monolayer. For higher temperature deposition, the β-Al(Cu, Co) phase further transforms into the γ-Al(4)Cu(9) phase. Both β and γ phases grow as two (110) domains rotated by 72° ± 1° from each other. Instead of following the substrate symmetry, it is the orientations of the bipentagonal motifs present on the clean Al(13)Co(4)(100) surface that dictate the growth orientation of these domains. The initial bulk composition and structural complexity of the substrate have a minor role in the formation of the γ-Al(4)Cu(9) phase as long as the amount of Al and the Cu film thickness reach a critical stoichiometry.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0953-8984
1361-648X
DOI:10.1088/0953-8984/23/43/435009