A framework for personalization of computational models of the human atria
A framework for step-by-step personalization of a computational model of human atria is presented. Beginning with anatomical modeling based on CT or MRI data, next fiber structure is superimposed using a rule-based method. If available, late-enhancement-MRI images can be considered in order to mark...
Saved in:
Published in | 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society Vol. 2011; pp. 4324 - 4328 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A framework for step-by-step personalization of a computational model of human atria is presented. Beginning with anatomical modeling based on CT or MRI data, next fiber structure is superimposed using a rule-based method. If available, late-enhancement-MRI images can be considered in order to mark fibrotic tissue. A first estimate of individual electrophysiology is gained from BSPM data solving the inverse problem of ECG. A final adjustment of electrophysiology is realized using intracardiac measurements. The framework is applied using several patient data. First clinical application will be computer assisted planning of RF-ablation for treatment of atrial flutter and atrial fibrillation. |
---|---|
ISBN: | 9781424441211 1424441218 |
ISSN: | 1094-687X 1557-170X 1558-4615 |
DOI: | 10.1109/IEMBS.2011.6091073 |