Pressure-induced isostructural electronic topological transitions in 2H-MoTe2: x-ray diffraction and first-principles study
Synchrotron x-ray diffraction measurements on powder 2H-MoTe2 (P63/mmc) up to ∼46 GPa have been performed along with first-principles based density functional theoretical analysis to probe the isostructural transition in low pressure regime and two electronic topological transitions (ETT) of Lifshit...
Saved in:
Published in | Journal of physics. Condensed matter Vol. 33; no. 6; p. 065402 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
10.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Synchrotron x-ray diffraction measurements on powder 2H-MoTe2 (P63/mmc) up to ∼46 GPa have been performed along with first-principles based density functional theoretical analysis to probe the isostructural transition in low pressure regime and two electronic topological transitions (ETT) of Lifshitz-type in high pressure regime. The low pressure isostructural transition at ∼7 GPa is associated with the lattice parameter ratio c/a anomaly and the change in the compressibility of individual layers. The pressure dependence of the volume by linearizing the Birch-Murnaghan equation of state as a function of Eulerian strain shows a clear change of the bulk modulus at the ETT pressure of ∼20 GPa. The minimum of c/a ratio around 32 GPa is associated with the change in topology of electron pockets marked as second ETT of Lifshitz-type. We do not observe any structural transition up to the maximum applied pressure of ∼46 GPa under quasi-hydrostatic condition. |
---|---|
Bibliography: | JPCM-116599.R2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0953-8984 1361-648X |
DOI: | 10.1088/1361-648X/abaeac |