A Computational Intelligence Characterization of Solar Magnetograms

Space Weather (SW) poses a hazard to modern society. SW phenomena depend on the Sun's magnetic field and understanding and forecasting the solar magnetic field is an important research subject. To achieve this goal, in this paper Global Oscillation Network Group (GONG) solar magnetograms 2006-2...

Full description

Saved in:
Bibliographic Details
Published inProceedings of ... International Joint Conference on Neural Networks pp. 1 - 8
Main Authors Valdes, Julio J., Nikolic, Ljubomir, Disabato, Simone, Roveri, Manual
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Space Weather (SW) poses a hazard to modern society. SW phenomena depend on the Sun's magnetic field and understanding and forecasting the solar magnetic field is an important research subject. To achieve this goal, in this paper Global Oscillation Network Group (GONG) solar magnetograms 2006-2019 are investigated with different approaches provided by unsupervised and supervised Computational Intelligence techniques. Such techniques were successful at providing insights into the behavior and evolution of the photospheric magnetic field, revealing patterns of activity and their relation with the different phases of the solar cycle. On the one hand, representative prototypes of synoptic maps were found, capturing the variations in homogeneity, intensity and variability of magnetic activity. On the other hand, Convolutional neural networks combined with transfer learning and dimensionality reduction techniques were helpful in providing classification models which accurately predict classes associated to the main stages of the cycle. Such models provide results in good correspondence with the natural classes found in feature spaces and have classification errors concentrated mostly at transition periods of the solar cycles.
ISSN:2161-4407
DOI:10.1109/IJCNN48605.2020.9206596