Uncertainty decomposition and reduction in river flood forecasting: Belgian case study

Uncertainty is a key factor to be taken into account in river flood forecasting. Every forecast is subject to several sources of uncertainty. Knowledge on the relative importance of the different sources would be useful to determine the most effective improvement actions to reduce the uncertainty. I...

Full description

Saved in:
Bibliographic Details
Published inJournal of flood risk management Vol. 8; no. 3; pp. 263 - 275
Main Authors Van Steenbergen, N., Willems, P.
Format Journal Article
LanguageEnglish
Published London Blackwell Publishing Ltd 01.09.2015
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1753-318X
1753-318X
DOI10.1111/jfr3.12093

Cover

Loading…
Abstract Uncertainty is a key factor to be taken into account in river flood forecasting. Every forecast is subject to several sources of uncertainty. Knowledge on the relative importance of the different sources would be useful to determine the most effective improvement actions to reduce the uncertainty. In this paper, three key uncertainty sources are studied for hydrological flood forecasting in the Belgian case study of the Rivierbeek: model uncertainty, forecasted rainfall uncertainty and uncertainty in the initial conditions. A non‐parametric data‐based approach is used to quantify the total uncertainty in the forecasts. By resimulating in the model historical forecasts with optimal initial conditions and observed rainfall, the uncertainty generated by each of the key sources could be identified. In order to reduce the model uncertainty, which was primarily identified as the most important source of uncertainty, a step‐wise physically based calibration technique was suggested. After recalibration of the model with this technique, a significant reduction of the contribution of the model uncertainty to the total forecast uncertainty could be achieved. Further improvement of the initial conditions, identified as the second most important uncertainty source for short lead times, could be obtained by applying data assimilation. Both uncertainty reduction techniques combined led to a reduction of the total forecast uncertainty with 30% to 40%.
AbstractList Uncertainty is a key factor to be taken into account in river flood forecasting. Every forecast is subject to several sources of uncertainty. Knowledge on the relative importance of the different sources would be useful to determine the most effective improvement actions to reduce the uncertainty. In this paper, three key uncertainty sources are studied for hydrological flood forecasting in the Belgian case study of the Rivierbeek: model uncertainty, forecasted rainfall uncertainty and uncertainty in the initial conditions. A non-parametric data-based approach is used to quantify the total uncertainty in the forecasts. By resimulating in the model historical forecasts with optimal initial conditions and observed rainfall, the uncertainty generated by each of the key sources could be identified. In order to reduce the model uncertainty, which was primarily identified as the most important source of uncertainty, a step-wise physically based calibration technique was suggested. After recalibration of the model with this technique, a significant reduction of the contribution of the model uncertainty to the total forecast uncertainty could be achieved. Further improvement of the initial conditions, identified as the second most important uncertainty source for short lead times, could be obtained by applying data assimilation. Both uncertainty reduction techniques combined led to a reduction of the total forecast uncertainty with 30% to 40%.
Author Van Steenbergen, N.
Willems, P.
Author_xml – sequence: 1
  givenname: N.
  surname: Van Steenbergen
  fullname: Van Steenbergen, N.
  email: niels.vansteenbergen@bwk.kuleuven.be
  organization: Hydraulics Division, KU Leuven, Leuven, Belgium
– sequence: 2
  givenname: P.
  surname: Willems
  fullname: Willems, P.
  organization: Hydraulics Division, KU Leuven, Leuven, Belgium
BookMark eNpdkE1rGzEQhkVxoHaSS36BoJdeNpVWq4_trQ6J22ISCPkiF6HVzga5a8mRdpP630exSymdy3zwvMPMO0MTHzwgdELJKc3xZdVFdkpLUrMPaEolZwWj6mHyT_0RzVJaESKkktUU3d16C3Ewzg9b3IIN601IbnDBY-NbHKEd7a5zHkf3AhF3fQgt7kIEa9Lg_NNXPIf-yRmP8wBwGsZ2e4QOOtMnOP6TD9HtxfnN2fdiebX4cfZtWbiyFqxQdaNIJVoB3KiKN0zysisBmDXSckNFW0vVsIbZplSkgYpzgKq1FS-VyRg7RJ_3ezcxPI-QBr12yULfGw9hTJpKWnJRCiIy-uk_dBXG6PN1mSJccMEqlSm6p15dD1u9iW5t4lZTot_91e_-6p2_-ufFNdtVWVPsNS4N8PuvxsRfWsj8kr6_XOi6lnO24I96yd4AF4qBJw
ContentType Journal Article
Copyright 2014 The Chartered Institution of Water and Environmental Management (CIWEM) and John Wiley & Sons Ltd
Copyright © 2015 The Chartered Institution of Water and Environmental Management (CIWEM) and John Wiley & Sons Ltd
Copyright_xml – notice: 2014 The Chartered Institution of Water and Environmental Management (CIWEM) and John Wiley & Sons Ltd
– notice: Copyright © 2015 The Chartered Institution of Water and Environmental Management (CIWEM) and John Wiley & Sons Ltd
DBID BSCLL
7QH
7TG
7UA
C1K
F1W
H96
H97
KL.
L.G
7U1
DOI 10.1111/jfr3.12093
DatabaseName Istex
Aqualine
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Risk Abstracts
DatabaseTitle Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
Risk Abstracts
DatabaseTitleList Risk Abstracts

Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1753-318X
EndPage 275
ExternalDocumentID 3783700401
JFR312093
ark_67375_WNG_997B3G5Z_L
Genre article
GeographicLocations Belgium
GeographicLocations_xml – name: Belgium
GroupedDBID 05W
0R~
1OC
24P
29K
31~
4.4
5DZ
5GY
6KP
8-1
AAESR
AAHHS
AAZKR
ABCUV
ABJCF
ACBWZ
ACCFJ
ACGFO
ACGFS
ACPOU
ACXQS
ADBBV
ADEOM
ADMGS
ADPDF
ADXAS
AEEZP
AENEX
AEQDE
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ASPBG
ATCPS
AVWKF
AZFZN
AZVAB
BDRZF
BENPR
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BRXPI
BSCLL
C45
CAG
CCPQU
COF
CS3
D-I
DCZOG
EBS
EJD
FEDTE
G-S
GODZA
GROUPED_DOAJ
HCIFZ
HVGLF
HZ~
LH4
LITHE
LOXES
LUTES
LW6
LYRES
M7S
MSFUL
MSSTM
MXFUL
MXSTM
MY~
M~E
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
PATMY
PCBAR
PIMPY
PTHSS
PYCSY
ROL
SUPJJ
TEORI
WBKPD
WIN
WOHZO
XV2
ZZTAW
AANHP
AAYCA
ACCMX
ACRPL
ACYXJ
ADNMO
AEUYN
7QH
7TG
7UA
AAMMB
AEFGJ
AGQPQ
AGXDD
AIDQK
AIDYY
C1K
F1W
H96
H97
KL.
L.G
7U1
ID FETCH-LOGICAL-i2963-89b8046d6e5a845b3752f2ee3ca7c5a16d978b3b3cb280be455ee4dc4528aee33
ISSN 1753-318X
IngestDate Thu Jul 10 22:49:11 EDT 2025
Wed Aug 13 07:02:43 EDT 2025
Wed Jan 22 16:31:05 EST 2025
Wed Oct 30 09:57:51 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-i2963-89b8046d6e5a845b3752f2ee3ca7c5a16d978b3b3cb280be455ee4dc4528aee33
Notes ark:/67375/WNG-997B3G5Z-L
istex:CC6C9810B3712595746DE6130B4F2F4259D9DE90
ArticleID:JFR312093
ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1705656348
PQPubID 1006409
PageCount 13
ParticipantIDs proquest_miscellaneous_1712562606
proquest_journals_1705656348
wiley_primary_10_1111_jfr3_12093_JFR312093
istex_primary_ark_67375_WNG_997B3G5Z_L
PublicationCentury 2000
PublicationDate 2015-09
September 2015
20150901
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Journal of flood risk management
PublicationTitleAlternate J. Flood Risk Manage
PublicationYear 2015
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
References Yapo P.O., Gupta H.V. & Sorooshian S. Multi-objective global optimization for hydrological models. J Hydrol 1998, 204, 83-97.
Gupta H.V., Sorooshian S. & Yapo P.O. Towards improved calibration of hydrological models: multiple and noncommensurable measures of information. Water Resour Res 1998, 34, 751-763.
Draper D. Assessment and propagation of model uncertainty. J Roy Stat Soc B 1995, 57, (1), 45-97.
Dumedah G. & Coulibaly P. Evolutionary assimilation of streamflow data in distributed hydrologic modeling using in-situ soil moisture data. Adv Water Resour 2013, 53, 231-241.
Krzysztofowicz R. & Kelly K.S. Hydrologic uncertainty processor for probabilistic river stage forecasting. Water Resour Res 2000, 36, (11), 3265-3277.
Zappa M., Jaun S., Germann U., Walser A. & Fundel F. Superposition of uncertainties in operational flood forecasting chains. Atmos Res 2011, 100, 246-262.
Koenker R. & Hallock K.F. Quantile regression. J Econ Perspect 2001, 15, (4), 143-156.
Rossa A., Liechti K., Zappa M., Bruen M., Germann U., Haase G., Keil C. & Krahe P. The COST 731 Action: a review on uncertainty propagation in advanced hydro-meteorological forecast systems. Atmos Res 2011, 100, 150-167.
Aubert D., Loumagne C. & Oudin L. Sequential assimilation of soil moisture and streamflow data in a conceptual rainfall-runoff model. J Hydrol 2003, 280, (1-4), 145-161.
Todini E. A model conditional processor to assess predictive uncertainty in flood forecasting. Int J River Basin Manag 2008, 6, (2), 123-137.
Nielsen S.A. & Hansen E. Numerical simulation of the rainfall-runoff process on a daily basis. Nord Hydrol 1973, 4, 171-190.
Freer J., Beven K. & Ambroise B. Bayesian estimation of uncertainty in runoff prediction and the value of data: an application of the GLUE approach. Water Resour Res 1996, 32, (7), 2161-2173.
Beven K.J. & Freer J. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J Hydrol 2001, 249, (1-4), 11-29.
Beven K. & Binley A. The future of distributed model: calibration and uncertainty prediction. Hydrological Process 1992, 6, 279-298.
Guinot V., Cappelaere B., Delenne C. & Ruelland D. Towards improved criteria for hydrological model calibration: theoretical analysis of distance- and weak form-based functions. J Hydrol 2011, 401, 1-13.
Krzysztofowicz R. Bayesian theory of probabilistic forecasting via deterministic hydrologic model. Water Resour Res 1999, 35, 2739-2750.
Madsen H. Automatic calibration of a conceptual rainfall-runoff model using multiple objectives. J Hydrol 2000, 235, 276-288.
Brocca L., Melone F., Moramarco T., Wagner W., Naemi V., Bartalis Z. & Hasenauer S. Improving runoff prediction through the assimilation of the ASCAT soil moisture product. Hydrol Earth Sys Sci 2010, 14, 1881-1893. doi: 10.5194/hess-14-1881-2010.
Chapman T.G. Comment on 'Evaluation of automated techniques for base flow and recession analyses' by R. J. Nathan and T. A. McMahon. Water Resour Res 1991, 27, (7), 1783-1784.
Gupta H.V., Kling H., Yilmaz K.K. & Martinez G.F. Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modeling. J Hydrol 2009, 377, 80-91.
Coccia G. & Todini E. Recent developments in predictive uncertainty assessment based on the model conditional processor approach. Hydrol Earth Sys Sci 2011, 15, 3253-3274.
Van Steenbergen N., Ronsyn J. & Willems P. A non-parametric data-based approach for probabilistic flood forecasting in support of uncertainty communication. Environ Modell Softw 2012, 33, 92-105.
Nash J.E. & Sutcliffe I.V. River flow forecasting trough conceptual models. J Hydrol 1970, 273, 282-290.
Van Steenbergen N. & Willems P. Method for testing the accuracy of rainfall-runoff models in predicting peak flow changes due to rainfall changes, in a climate changing context. J Hydrol 2012, 414-415, 425-434.
Madsen H., Wilson G. & Ammentorp H.C. Comparison of different automated strategies for calibration of rainfall-runoff models. J Hydrol 2002, 261, (1-4), 48-59.
Lee H., Seo D.-J. & Koren V. Assimilation of streamflow and in situ soil moisture data into operational distributed hydrologic models: effects of uncertainties in the data and initial model soil moisture states. Adv Water Resour 2011, 34, (12), 1597-1615.
Meixner T., Gupta H.V., Bastidas L.A. & Bales R.C. Sensitivity analysis using mass flux and concentration. Hydrological Process 1999, 13, 2233-2244.
Willems P. A time series tool to support the multi-criteria performance evaluation of rainfall-runoff models. Environ Modell Softw 2009, 24, (3), 311-321.
Koenker R. & Bassett G. Regression Quantiles. Econometrica 1978, 46, (1), 33-50.
Cloke H.L. & Pappenberger F. Ensemble flood forecasting: a review. J Hydrol 2009, 375, 613-626.
Gerard L., Piriou J.-M., Brožková R., Geleyn J.-F. & Banciu D. Cloud and precipitation parametrization in a meso-gamma-scale operational weather prediction model. Mon Weather Rev 2009, 137, 3960-3977.
2009; 24
2010; 14
2000; 235
2010
1995; 57
2009; 375
2007
2009; 377
2005
2011; 34
1993
2008; 6
2011; 15
2012; 414–415
2012; 33
1996; 32
2009; 137
2001; 249
1992; 6
2011; 401
1970; 273
1991; 27
2000; 36
2002; 261
2013; 53
1999; 35
1999; 13
2003; 280
2001; 15
1978; 46
1998; 204
1998; 34
2011; 100
1973; 4
References_xml – reference: Yapo P.O., Gupta H.V. & Sorooshian S. Multi-objective global optimization for hydrological models. J Hydrol 1998, 204, 83-97.
– reference: Coccia G. & Todini E. Recent developments in predictive uncertainty assessment based on the model conditional processor approach. Hydrol Earth Sys Sci 2011, 15, 3253-3274.
– reference: Madsen H., Wilson G. & Ammentorp H.C. Comparison of different automated strategies for calibration of rainfall-runoff models. J Hydrol 2002, 261, (1-4), 48-59.
– reference: Chapman T.G. Comment on 'Evaluation of automated techniques for base flow and recession analyses' by R. J. Nathan and T. A. McMahon. Water Resour Res 1991, 27, (7), 1783-1784.
– reference: Lee H., Seo D.-J. & Koren V. Assimilation of streamflow and in situ soil moisture data into operational distributed hydrologic models: effects of uncertainties in the data and initial model soil moisture states. Adv Water Resour 2011, 34, (12), 1597-1615.
– reference: Van Steenbergen N., Ronsyn J. & Willems P. A non-parametric data-based approach for probabilistic flood forecasting in support of uncertainty communication. Environ Modell Softw 2012, 33, 92-105.
– reference: Draper D. Assessment and propagation of model uncertainty. J Roy Stat Soc B 1995, 57, (1), 45-97.
– reference: Willems P. A time series tool to support the multi-criteria performance evaluation of rainfall-runoff models. Environ Modell Softw 2009, 24, (3), 311-321.
– reference: Zappa M., Jaun S., Germann U., Walser A. & Fundel F. Superposition of uncertainties in operational flood forecasting chains. Atmos Res 2011, 100, 246-262.
– reference: Krzysztofowicz R. Bayesian theory of probabilistic forecasting via deterministic hydrologic model. Water Resour Res 1999, 35, 2739-2750.
– reference: Rossa A., Liechti K., Zappa M., Bruen M., Germann U., Haase G., Keil C. & Krahe P. The COST 731 Action: a review on uncertainty propagation in advanced hydro-meteorological forecast systems. Atmos Res 2011, 100, 150-167.
– reference: Aubert D., Loumagne C. & Oudin L. Sequential assimilation of soil moisture and streamflow data in a conceptual rainfall-runoff model. J Hydrol 2003, 280, (1-4), 145-161.
– reference: Guinot V., Cappelaere B., Delenne C. & Ruelland D. Towards improved criteria for hydrological model calibration: theoretical analysis of distance- and weak form-based functions. J Hydrol 2011, 401, 1-13.
– reference: Koenker R. & Hallock K.F. Quantile regression. J Econ Perspect 2001, 15, (4), 143-156.
– reference: Meixner T., Gupta H.V., Bastidas L.A. & Bales R.C. Sensitivity analysis using mass flux and concentration. Hydrological Process 1999, 13, 2233-2244.
– reference: Nielsen S.A. & Hansen E. Numerical simulation of the rainfall-runoff process on a daily basis. Nord Hydrol 1973, 4, 171-190.
– reference: Freer J., Beven K. & Ambroise B. Bayesian estimation of uncertainty in runoff prediction and the value of data: an application of the GLUE approach. Water Resour Res 1996, 32, (7), 2161-2173.
– reference: Cloke H.L. & Pappenberger F. Ensemble flood forecasting: a review. J Hydrol 2009, 375, 613-626.
– reference: Gupta H.V., Sorooshian S. & Yapo P.O. Towards improved calibration of hydrological models: multiple and noncommensurable measures of information. Water Resour Res 1998, 34, 751-763.
– reference: Gupta H.V., Kling H., Yilmaz K.K. & Martinez G.F. Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modeling. J Hydrol 2009, 377, 80-91.
– reference: Van Steenbergen N. & Willems P. Method for testing the accuracy of rainfall-runoff models in predicting peak flow changes due to rainfall changes, in a climate changing context. J Hydrol 2012, 414-415, 425-434.
– reference: Brocca L., Melone F., Moramarco T., Wagner W., Naemi V., Bartalis Z. & Hasenauer S. Improving runoff prediction through the assimilation of the ASCAT soil moisture product. Hydrol Earth Sys Sci 2010, 14, 1881-1893. doi: 10.5194/hess-14-1881-2010.
– reference: Beven K.J. & Freer J. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J Hydrol 2001, 249, (1-4), 11-29.
– reference: Madsen H. Automatic calibration of a conceptual rainfall-runoff model using multiple objectives. J Hydrol 2000, 235, 276-288.
– reference: Gerard L., Piriou J.-M., Brožková R., Geleyn J.-F. & Banciu D. Cloud and precipitation parametrization in a meso-gamma-scale operational weather prediction model. Mon Weather Rev 2009, 137, 3960-3977.
– reference: Dumedah G. & Coulibaly P. Evolutionary assimilation of streamflow data in distributed hydrologic modeling using in-situ soil moisture data. Adv Water Resour 2013, 53, 231-241.
– reference: Koenker R. & Bassett G. Regression Quantiles. Econometrica 1978, 46, (1), 33-50.
– reference: Nash J.E. & Sutcliffe I.V. River flow forecasting trough conceptual models. J Hydrol 1970, 273, 282-290.
– reference: Krzysztofowicz R. & Kelly K.S. Hydrologic uncertainty processor for probabilistic river stage forecasting. Water Resour Res 2000, 36, (11), 3265-3277.
– reference: Todini E. A model conditional processor to assess predictive uncertainty in flood forecasting. Int J River Basin Manag 2008, 6, (2), 123-137.
– reference: Beven K. & Binley A. The future of distributed model: calibration and uncertainty prediction. Hydrological Process 1992, 6, 279-298.
– volume: 14
  start-page: 1881
  year: 2010
  end-page: 1893
  article-title: Improving runoff prediction through the assimilation of the ASCAT soil moisture product
  publication-title: Hydrol Earth Sys Sci
– volume: 35
  start-page: 2739
  year: 1999
  end-page: 2750
  article-title: Bayesian theory of probabilistic forecasting via deterministic hydrologic model
  publication-title: Water Resour Res
– volume: 249
  start-page: 11
  issue: 1–4
  year: 2001
  end-page: 29
  article-title: Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology
  publication-title: J Hydrol
– volume: 414–415
  start-page: 425
  year: 2012
  end-page: 434
  article-title: Method for testing the accuracy of rainfall‐runoff models in predicting peak flow changes due to rainfall changes, in a climate changing context
  publication-title: J Hydrol
– start-page: 351
  year: 2005
– volume: 273
  start-page: 282
  year: 1970
  end-page: 290
  article-title: River flow forecasting trough conceptual models
  publication-title: J Hydrol
– volume: 33
  start-page: 92
  year: 2012
  end-page: 105
  article-title: A non‐parametric data‐based approach for probabilistic flood forecasting in support of uncertainty communication
  publication-title: Environ Modell Softw
– year: 2007
– volume: 100
  start-page: 150
  year: 2011
  end-page: 167
  article-title: The COST 731 Action: a review on uncertainty propagation in advanced hydro‐meteorological forecast systems
  publication-title: Atmos Res
– volume: 137
  start-page: 3960
  year: 2009
  end-page: 3977
  article-title: Cloud and precipitation parametrization in a meso‐gamma‐scale operational weather prediction model
  publication-title: Mon Weather Rev
– volume: 377
  start-page: 80
  year: 2009
  end-page: 91
  article-title: Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modeling
  publication-title: J Hydrol
– volume: 280
  start-page: 145
  issue: 1–4
  year: 2003
  end-page: 161
  article-title: Sequential assimilation of soil moisture and streamflow data in a conceptual rainfall‐runoff model
  publication-title: J Hydrol
– volume: 261
  start-page: 48
  issue: 1–4
  year: 2002
  end-page: 59
  article-title: Comparison of different automated strategies for calibration of rainfall‐runoff models
  publication-title: J Hydrol
– volume: 100
  start-page: 246
  year: 2011
  end-page: 262
  article-title: Superposition of uncertainties in operational flood forecasting chains
  publication-title: Atmos Res
– start-page: 163
  year: 1993
  end-page: 180
– volume: 27
  start-page: 1783
  issue: 7
  year: 1991
  end-page: 1784
  article-title: Comment on ‘Evaluation of automated techniques for base flow and recession analyses’ by R. J. Nathan and T. A. McMahon
  publication-title: Water Resour Res
– volume: 13
  start-page: 2233
  year: 1999
  end-page: 2244
  article-title: Sensitivity analysis using mass flux and concentration
  publication-title: Hydrological Process
– year: 2010
– volume: 15
  start-page: 3253
  year: 2011
  end-page: 3274
  article-title: Recent developments in predictive uncertainty assessment based on the model conditional processor approach
  publication-title: Hydrol Earth Sys Sci
– volume: 34
  start-page: 751
  year: 1998
  end-page: 763
  article-title: Towards improved calibration of hydrological models: multiple and noncommensurable measures of information
  publication-title: Water Resour Res
– volume: 235
  start-page: 276
  year: 2000
  end-page: 288
  article-title: Automatic calibration of a conceptual rainfall‐runoff model using multiple objectives
  publication-title: J Hydrol
– volume: 4
  start-page: 171
  year: 1973
  end-page: 190
  article-title: Numerical simulation of the rainfall‐runoff process on a daily basis
  publication-title: Nord Hydrol
– volume: 6
  start-page: 279
  year: 1992
  end-page: 298
  article-title: The future of distributed model: calibration and uncertainty prediction
  publication-title: Hydrological Process
– volume: 24
  start-page: 311
  issue: 3
  year: 2009
  end-page: 321
  article-title: A time series tool to support the multi‐criteria performance evaluation of rainfall‐runoff models
  publication-title: Environ Modell Softw
– volume: 34
  start-page: 1597
  issue: 12
  year: 2011
  end-page: 1615
  article-title: Assimilation of streamflow and in situ soil moisture data into operational distributed hydrologic models: effects of uncertainties in the data and initial model soil moisture states
  publication-title: Adv Water Resour
– volume: 53
  start-page: 231
  year: 2013
  end-page: 241
  article-title: Evolutionary assimilation of streamflow data in distributed hydrologic modeling using in‐situ soil moisture data
  publication-title: Adv Water Resour
– volume: 15
  start-page: 143
  issue: 4
  year: 2001
  end-page: 156
  article-title: Quantile regression
  publication-title: J Econ Perspect
– volume: 32
  start-page: 2161
  issue: 7
  year: 1996
  end-page: 2173
  article-title: Bayesian estimation of uncertainty in runoff prediction and the value of data: an application of the GLUE approach
  publication-title: Water Resour Res
– volume: 204
  start-page: 83
  year: 1998
  end-page: 97
  article-title: Multi‐objective global optimization for hydrological models
  publication-title: J Hydrol
– volume: 36
  start-page: 3265
  issue: 11
  year: 2000
  end-page: 3277
  article-title: Hydrologic uncertainty processor for probabilistic river stage forecasting
  publication-title: Water Resour Res
– volume: 46
  start-page: 33
  issue: 1
  year: 1978
  end-page: 50
  article-title: Regression Quantiles
  publication-title: Econometrica
– volume: 375
  start-page: 613
  year: 2009
  end-page: 626
  article-title: Ensemble flood forecasting: a review
  publication-title: J Hydrol
– volume: 6
  start-page: 123
  issue: 2
  year: 2008
  end-page: 137
  article-title: A model conditional processor to assess predictive uncertainty in flood forecasting
  publication-title: Int J River Basin Manag
– volume: 401
  start-page: 1
  year: 2011
  end-page: 13
  article-title: Towards improved criteria for hydrological model calibration: theoretical analysis of distance‐ and weak form‐based functions
  publication-title: J Hydrol
– volume: 57
  start-page: 45
  issue: 1
  year: 1995
  end-page: 97
  article-title: Assessment and propagation of model uncertainty
  publication-title: J Roy Stat Soc B
SSID ssj0067874
Score 2.028331
Snippet Uncertainty is a key factor to be taken into account in river flood forecasting. Every forecast is subject to several sources of uncertainty. Knowledge on the...
SourceID proquest
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 263
SubjectTerms Calibration
Case studies
data assimilation
Data collection
Decomposition
Flood forecasting
Floods
hydrological modelling
Meteorology
River forecasting
Rivers
uncertainty decomposition
Weather forecasting
Title Uncertainty decomposition and reduction in river flood forecasting: Belgian case study
URI https://api.istex.fr/ark:/67375/WNG-997B3G5Z-L/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjfr3.12093
https://www.proquest.com/docview/1705656348
https://www.proquest.com/docview/1712562606
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLage4EHxLiIjjEZCfEAytT5kjh7Y9BumqoOobZUvFhx7KCJkaGuk9B-PefYiZtpQxq8RJGTuJU_-1x8vnNMyJucZcwaI5JBbngCFjhLcgGGnALtKRirstJ4lu8kPZqJ44VcrE9x9NklK7NbXt2aV_I_qEIb4IpZsv-AbOwUGuAe8IUrIAzXO2E8A8R8RB8saeuQHd5QsAJrHKuytlzGJfIv3ldIU0dmoSuLizbX-cCdfcdlDk3dcrM3LdbwtSej_7zBmpmjoFi5QBgLsixGeXBTx4U9nc_dbYY9GXlUrWQEvwZTrRdBcdzS1ohT1Zk1vCsaG0EWtCwL56X8TYBXS76LWb18raba0PzkRI9m47GeDhfT-2SDgXvAemTjZD4cfmp1MGhgX387_sGmMK3ncMW-wR_BpfT7mnPRdVG8jTF9TB41Q00_BKQ3yT1XPyEPOyUjn5J5B3N6DXMKmNOIOT2tqcecetRoB_N92iBOEXHqEX9GZqPh9ONR0pyNkZwykJmJyo0aiNSmThZKSMMzySrmHC-LrJTFXmrzTBlueGmYGhgnpHRO2FJIpgp4jT8nvfq8di8IdZZJcJutqTAsXDBVZValFixTw8oqk33y1g-T_hXqn-hi-QPpgJnUXyeHOs-zA34ov-lxn2y346ibVXKhsVwT-AxcqD55HR-DDMPAVFG780t8B8xs9KzTPnnnxz_-VvRRATXtUdPHoy_c323docOX5MF6Nm-T3mp56V6BGbkyO82c-QONBnUr
linkProvider Ovid
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertainty+decomposition+and+reduction+in+river+flood+forecasting%3A+Belgian+case+study&rft.jtitle=Journal+of+flood+risk+management&rft.au=Van+Steenbergen%2C+N&rft.au=Willems%2C+P&rft.date=2015-09-01&rft.issn=1753-318X&rft.eissn=1753-318X&rft.volume=8&rft.issue=3&rft.spage=263&rft.epage=275&rft_id=info:doi/10.1111%2Fjfr3.12093&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1753-318X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1753-318X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1753-318X&client=summon