Estimating Sparse Signals with Smooth Support via Convex Programming and Block Sparsity

Conventional algorithms for sparse signal recovery and sparse representation rely on l1-norm regularized variational methods. However, when applied to the reconstruction of sparse images, i.e., images where only a few pixels are non-zero, simple l1-norm-based methods ignore potential correlations in...

Full description

Saved in:
Bibliographic Details
Published in2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 5906 - 5915
Main Authors Shah, Sohil, Goldstein, Tom, Studer, Christoph
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Conventional algorithms for sparse signal recovery and sparse representation rely on l1-norm regularized variational methods. However, when applied to the reconstruction of sparse images, i.e., images where only a few pixels are non-zero, simple l1-norm-based methods ignore potential correlations in the support between adjacent pixels. In a number of applications, one is interested in images that are not only sparse, but also have a support with smooth (or contiguous) boundaries. Existing algorithms that take into account such a support structure mostly rely on nonconvex methods and-as a consequence-do not scale well to high-dimensional problems and/or do not converge to global optima. In this paper, we explore the use of new block l1-norm regularizers, which enforce image sparsity while simultaneously promoting smooth support structure. By exploiting the convexity of our regularizers, we develop new computationally-efficient recovery algorithms that guarantee global optimality. We demonstrate the efficacy of our regularizers on a variety of imaging tasks including compressive image recovery, image restoration, and robust PCA.
AbstractList Conventional algorithms for sparse signal recovery and sparse representation rely on l1-norm regularized variational methods. However, when applied to the reconstruction of sparse images, i.e., images where only a few pixels are non-zero, simple l1-norm-based methods ignore potential correlations in the support between adjacent pixels. In a number of applications, one is interested in images that are not only sparse, but also have a support with smooth (or contiguous) boundaries. Existing algorithms that take into account such a support structure mostly rely on nonconvex methods and-as a consequence-do not scale well to high-dimensional problems and/or do not converge to global optima. In this paper, we explore the use of new block l1-norm regularizers, which enforce image sparsity while simultaneously promoting smooth support structure. By exploiting the convexity of our regularizers, we develop new computationally-efficient recovery algorithms that guarantee global optimality. We demonstrate the efficacy of our regularizers on a variety of imaging tasks including compressive image recovery, image restoration, and robust PCA.
Author Shah, Sohil
Studer, Christoph
Goldstein, Tom
Author_xml – sequence: 1
  givenname: Sohil
  surname: Shah
  fullname: Shah, Sohil
  email: sohilas@umd.edu
  organization: Univ. of Maryland, College Park, MD, USA
– sequence: 2
  givenname: Tom
  surname: Goldstein
  fullname: Goldstein, Tom
  email: tomg@cs.umd.edu
  organization: Univ. of Maryland, College Park, MD, USA
– sequence: 3
  givenname: Christoph
  surname: Studer
  fullname: Studer, Christoph
  email: studer@cornell.edu
  organization: Cornell Univ., Ithaca, NY, USA
BookMark eNotj71OwzAURg0CiVI6MrH4BRLurZNre4So_EiVqEgFY-XEbjE0cZSEQt-eVGU6w6fvSOeSndWhdoxdI8SIoG-zt8VrPAWkmASdsImWChOSQqkU8ZSNEEhEpFFfsEnXfQIAalKo9Ii9z7reV6b39YbnjWk7x3O_qc224z--_-B5FcIB300T2p7vvOFZqHfuly_asGlNVR2eprb8fhvKr6PD9_srdr4eJG7yzzFbPsyW2VM0f3l8zu7mkZ-qpI-kBAvSFGuyluzUFtYU6KwyUg17qqm0jlJtyzJJNJJQgHJNyjonECSKMbs5ar1zbtW0Q0q7X8mhHyAVf-maU9o
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2016.636
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9781467388511
1467388513
EISSN 1063-6919
EndPage 5915
ExternalDocumentID 7781005
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i284t-770d07abf6dd6d2dbdab1ed8a78284596cde659dcc4491638017f68dee310713
IEDL.DBID RIE
IngestDate Wed Aug 27 02:09:43 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i284t-770d07abf6dd6d2dbdab1ed8a78284596cde659dcc4491638017f68dee310713
OpenAccessLink http://hdl.handle.net/20.500.11850/455404
PageCount 10
ParticipantIDs ieee_primary_7781005
PublicationCentury 2000
PublicationDate 2016-June
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-June
PublicationDecade 2010
PublicationTitle 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
PublicationTitleAbbrev CVPR
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001968189
ssj0023720
ssj0003211698
Score 1.9901001
Snippet Conventional algorithms for sparse signal recovery and sparse representation rely on l1-norm regularized variational methods. However, when applied to the...
SourceID ieee
SourceType Publisher
StartPage 5906
SubjectTerms Computer vision
Image coding
Imaging
Memory management
Minimization
Robustness
Title Estimating Sparse Signals with Smooth Support via Convex Programming and Block Sparsity
URI https://ieeexplore.ieee.org/document/7781005
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb4JAEN1YTz3ZVpt-Zw89FgRdFvZaozFNbEy1rTfDsqMxRjAtNE1_fWcAsWl66AkYAmwWhnkzO_OGsdtASz8iiiE8D5aQpFLgepbRQoL2u16YM96MHuXwWTzMvFmN3VW1MACQJ5-BTbv5Wr5JooxCZW3fD9ycsPQAHbeiVmsfT1ESbY-qjrvo2UhVrSh0qBvLnmOz3XsZP1Fil7QlsTP_6KySG5ZBg412QyrySdZ2lmo7-vrF1vjfMR-x1r6Ej48r43TMahCfsEaJOXmp0e8o2rV12Mma7LWPak9ANl7yyRYdX-CT1ZJ4ljlFbflkkyS0ybaE3fnHKuQ9yl3_pAdSsteGrgxjw-_RUq6LeyDYb7HpoD_tDa2y_4K1QqOVIvB2jOOHeiGp7VTHaBNqF0wQIqoIhKdkZEB6ykSREIpwHWr3QgYGADEjOr-nrB4nMZwx7jkdbYQndBS6QvtuqLRcdBzoGvyhKNecsybN3HxbMGzMy0m7-Ft8yQ7pzRUJW1esnr5lcI3QINU3-TfxDU2xt4A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4NAEN409aAnH63x7R48CgW6u8DVpk3Vtmls1d4alt02TVNoFIzx1zsDlBrjwRMwBNgsDPPN7Mw3hNx4UrghUgzBeW0wgSqlbW4oyYSWbpMHGeNNfyC6z-xhwicVclvWwmits-QzbeJutpav4jDFUFnDdT07IyzdAbvP7bxaaxtR8QVYH788boJvI_xyTcHBfixbls1G62X4hKldwhTIz_yjt0pmWjr7pL8ZVJ5RsjTTRJrh1y--xv-O-oDUt0V8dFiap0NS0dER2S9QJy10-h1Em8YOG1mNvLZB8RHKRnM6WoPrq-loMUemZYpxWzpaxTFu0jWid_qxCGgLs9c_8YGY7rXCK4NI0Tuwlcv8HgD362TcaY9bXaPowGAswGwlAL0tZbmBnAlsPOUoqQJpa-UFgCs8xn0RKi24r8KQMR-RHej3THhKa0CN4P4ek2oUR_qEUG45UjHOZBjYTLp24EsxcyzdVPBL8W11Smo4c9N1zrExLSbt7G_xNdntjvu9ae9-8HhO9vAt5ulbF6SavKX6EoBCIq-y7-MbDxG6yQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=Estimating+Sparse+Signals+with+Smooth+Support+via+Convex+Programming+and+Block+Sparsity&rft.au=Shah%2C+Sohil&rft.au=Goldstein%2C+Tom&rft.au=Studer%2C+Christoph&rft.date=2016-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=5906&rft.epage=5915&rft_id=info:doi/10.1109%2FCVPR.2016.636&rft.externalDocID=7781005