Estimating Sparse Signals with Smooth Support via Convex Programming and Block Sparsity
Conventional algorithms for sparse signal recovery and sparse representation rely on l1-norm regularized variational methods. However, when applied to the reconstruction of sparse images, i.e., images where only a few pixels are non-zero, simple l1-norm-based methods ignore potential correlations in...
Saved in:
Published in | 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 5906 - 5915 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Conventional algorithms for sparse signal recovery and sparse representation rely on l1-norm regularized variational methods. However, when applied to the reconstruction of sparse images, i.e., images where only a few pixels are non-zero, simple l1-norm-based methods ignore potential correlations in the support between adjacent pixels. In a number of applications, one is interested in images that are not only sparse, but also have a support with smooth (or contiguous) boundaries. Existing algorithms that take into account such a support structure mostly rely on nonconvex methods and-as a consequence-do not scale well to high-dimensional problems and/or do not converge to global optima. In this paper, we explore the use of new block l1-norm regularizers, which enforce image sparsity while simultaneously promoting smooth support structure. By exploiting the convexity of our regularizers, we develop new computationally-efficient recovery algorithms that guarantee global optimality. We demonstrate the efficacy of our regularizers on a variety of imaging tasks including compressive image recovery, image restoration, and robust PCA. |
---|---|
AbstractList | Conventional algorithms for sparse signal recovery and sparse representation rely on l1-norm regularized variational methods. However, when applied to the reconstruction of sparse images, i.e., images where only a few pixels are non-zero, simple l1-norm-based methods ignore potential correlations in the support between adjacent pixels. In a number of applications, one is interested in images that are not only sparse, but also have a support with smooth (or contiguous) boundaries. Existing algorithms that take into account such a support structure mostly rely on nonconvex methods and-as a consequence-do not scale well to high-dimensional problems and/or do not converge to global optima. In this paper, we explore the use of new block l1-norm regularizers, which enforce image sparsity while simultaneously promoting smooth support structure. By exploiting the convexity of our regularizers, we develop new computationally-efficient recovery algorithms that guarantee global optimality. We demonstrate the efficacy of our regularizers on a variety of imaging tasks including compressive image recovery, image restoration, and robust PCA. |
Author | Shah, Sohil Studer, Christoph Goldstein, Tom |
Author_xml | – sequence: 1 givenname: Sohil surname: Shah fullname: Shah, Sohil email: sohilas@umd.edu organization: Univ. of Maryland, College Park, MD, USA – sequence: 2 givenname: Tom surname: Goldstein fullname: Goldstein, Tom email: tomg@cs.umd.edu organization: Univ. of Maryland, College Park, MD, USA – sequence: 3 givenname: Christoph surname: Studer fullname: Studer, Christoph email: studer@cornell.edu organization: Cornell Univ., Ithaca, NY, USA |
BookMark | eNotj71OwzAURg0CiVI6MrH4BRLurZNre4So_EiVqEgFY-XEbjE0cZSEQt-eVGU6w6fvSOeSndWhdoxdI8SIoG-zt8VrPAWkmASdsImWChOSQqkU8ZSNEEhEpFFfsEnXfQIAalKo9Ii9z7reV6b39YbnjWk7x3O_qc224z--_-B5FcIB300T2p7vvOFZqHfuly_asGlNVR2eprb8fhvKr6PD9_srdr4eJG7yzzFbPsyW2VM0f3l8zu7mkZ-qpI-kBAvSFGuyluzUFtYU6KwyUg17qqm0jlJtyzJJNJJQgHJNyjonECSKMbs5ar1zbtW0Q0q7X8mhHyAVf-maU9o |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2016.636 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 9781467388511 1467388513 |
EISSN | 1063-6919 |
EndPage | 5915 |
ExternalDocumentID | 7781005 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i284t-770d07abf6dd6d2dbdab1ed8a78284596cde659dcc4491638017f68dee310713 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:09:43 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i284t-770d07abf6dd6d2dbdab1ed8a78284596cde659dcc4491638017f68dee310713 |
OpenAccessLink | http://hdl.handle.net/20.500.11850/455404 |
PageCount | 10 |
ParticipantIDs | ieee_primary_7781005 |
PublicationCentury | 2000 |
PublicationDate | 2016-June |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-June |
PublicationDecade | 2010 |
PublicationTitle | 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001968189 ssj0023720 ssj0003211698 |
Score | 1.9901001 |
Snippet | Conventional algorithms for sparse signal recovery and sparse representation rely on l1-norm regularized variational methods. However, when applied to the... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 5906 |
SubjectTerms | Computer vision Image coding Imaging Memory management Minimization Robustness |
Title | Estimating Sparse Signals with Smooth Support via Convex Programming and Block Sparsity |
URI | https://ieeexplore.ieee.org/document/7781005 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb4JAEN1YTz3ZVpt-Zw89FgRdFvZaozFNbEy1rTfDsqMxRjAtNE1_fWcAsWl66AkYAmwWhnkzO_OGsdtASz8iiiE8D5aQpFLgepbRQoL2u16YM96MHuXwWTzMvFmN3VW1MACQJ5-BTbv5Wr5JooxCZW3fD9ycsPQAHbeiVmsfT1ESbY-qjrvo2UhVrSh0qBvLnmOz3XsZP1Fil7QlsTP_6KySG5ZBg412QyrySdZ2lmo7-vrF1vjfMR-x1r6Ej48r43TMahCfsEaJOXmp0e8o2rV12Mma7LWPak9ANl7yyRYdX-CT1ZJ4ljlFbflkkyS0ybaE3fnHKuQ9yl3_pAdSsteGrgxjw-_RUq6LeyDYb7HpoD_tDa2y_4K1QqOVIvB2jOOHeiGp7VTHaBNqF0wQIqoIhKdkZEB6ykSREIpwHWr3QgYGADEjOr-nrB4nMZwx7jkdbYQndBS6QvtuqLRcdBzoGvyhKNecsybN3HxbMGzMy0m7-Ft8yQ7pzRUJW1esnr5lcI3QINU3-TfxDU2xt4A |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4NAEN409aAnH63x7R48CgW6u8DVpk3Vtmls1d4alt02TVNoFIzx1zsDlBrjwRMwBNgsDPPN7Mw3hNx4UrghUgzBeW0wgSqlbW4oyYSWbpMHGeNNfyC6z-xhwicVclvWwmits-QzbeJutpav4jDFUFnDdT07IyzdAbvP7bxaaxtR8QVYH788boJvI_xyTcHBfixbls1G62X4hKldwhTIz_yjt0pmWjr7pL8ZVJ5RsjTTRJrh1y--xv-O-oDUt0V8dFiap0NS0dER2S9QJy10-h1Em8YOG1mNvLZB8RHKRnM6WoPrq-loMUemZYpxWzpaxTFu0jWid_qxCGgLs9c_8YGY7rXCK4NI0Tuwlcv8HgD362TcaY9bXaPowGAswGwlAL0tZbmBnAlsPOUoqQJpa-UFgCs8xn0RKi24r8KQMR-RHej3THhKa0CN4P4ek2oUR_qEUG45UjHOZBjYTLp24EsxcyzdVPBL8W11Smo4c9N1zrExLSbt7G_xNdntjvu9ae9-8HhO9vAt5ulbF6SavKX6EoBCIq-y7-MbDxG6yQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%29&rft.atitle=Estimating+Sparse+Signals+with+Smooth+Support+via+Convex+Programming+and+Block+Sparsity&rft.au=Shah%2C+Sohil&rft.au=Goldstein%2C+Tom&rft.au=Studer%2C+Christoph&rft.date=2016-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=5906&rft.epage=5915&rft_id=info:doi/10.1109%2FCVPR.2016.636&rft.externalDocID=7781005 |