Estimating Sparse Signals with Smooth Support via Convex Programming and Block Sparsity
Conventional algorithms for sparse signal recovery and sparse representation rely on l1-norm regularized variational methods. However, when applied to the reconstruction of sparse images, i.e., images where only a few pixels are non-zero, simple l1-norm-based methods ignore potential correlations in...
Saved in:
Published in | 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 5906 - 5915 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Conventional algorithms for sparse signal recovery and sparse representation rely on l1-norm regularized variational methods. However, when applied to the reconstruction of sparse images, i.e., images where only a few pixels are non-zero, simple l1-norm-based methods ignore potential correlations in the support between adjacent pixels. In a number of applications, one is interested in images that are not only sparse, but also have a support with smooth (or contiguous) boundaries. Existing algorithms that take into account such a support structure mostly rely on nonconvex methods and-as a consequence-do not scale well to high-dimensional problems and/or do not converge to global optima. In this paper, we explore the use of new block l1-norm regularizers, which enforce image sparsity while simultaneously promoting smooth support structure. By exploiting the convexity of our regularizers, we develop new computationally-efficient recovery algorithms that guarantee global optimality. We demonstrate the efficacy of our regularizers on a variety of imaging tasks including compressive image recovery, image restoration, and robust PCA. |
---|---|
ISSN: | 1063-6919 |
DOI: | 10.1109/CVPR.2016.636 |