Coherent Motion Segmentation in Moving Camera Videos Using Optical Flow Orientations

In moving camera videos, motion segmentation is commonly performed using the image plane motion of pixels, or optical flow. However, objects that are at different depths from the camera can exhibit different optical flows even if they share the same real-world motion. This can cause a depth-dependen...

Full description

Saved in:
Bibliographic Details
Published in2013 IEEE International Conference on Computer Vision pp. 1577 - 1584
Main Authors Narayana, Manjunath, Hanson, Allen, Learned-Miller, Erik
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 01.12.2013
Subjects
Online AccessGet full text
ISSN1550-5499
DOI10.1109/ICCV.2013.199

Cover

Loading…
More Information
Summary:In moving camera videos, motion segmentation is commonly performed using the image plane motion of pixels, or optical flow. However, objects that are at different depths from the camera can exhibit different optical flows even if they share the same real-world motion. This can cause a depth-dependent segmentation of the scene. Our goal is to develop a segmentation algorithm that clusters pixels that have similar real-world motion irrespective of their depth in the scene. Our solution uses optical flow orientations instead of the complete vectors and exploits the well-known property that under camera translation, optical flow orientations are independent of object depth. We introduce a probabilistic model that automatically estimates the number of observed independent motions and results in a labeling that is consistent with real-world motion in the scene. The result of our system is that static objects are correctly identified as one segment, even if they are at different depths. Color features and information from previous frames in the video sequence are used to correct occasional errors due to the orientation-based segmentation. We present results on more than thirty videos from different benchmarks. The system is particularly robust on complex background scenes containing objects at significantly different depths.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
ISSN:1550-5499
DOI:10.1109/ICCV.2013.199