Dictionary Learning and Sparse Coding on Grassmann Manifolds: An Extrinsic Solution

Recent advances in computer vision and machine learning suggest that a wide range of problems can be addressed more appropriately by considering non-Euclidean geometry. In this paper we explore sparse dictionary learning over the space of linear subspaces, which form Riemannian structures known as G...

Full description

Saved in:
Bibliographic Details
Published in2013 IEEE International Conference on Computer Vision pp. 3120 - 3127
Main Authors Harandi, Mehrtash, Sanderson, Conrad, Chunhua Shen, Lovell, Brian
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 01.12.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Recent advances in computer vision and machine learning suggest that a wide range of problems can be addressed more appropriately by considering non-Euclidean geometry. In this paper we explore sparse dictionary learning over the space of linear subspaces, which form Riemannian structures known as Grassmann manifolds. To this end, we propose to embed Grassmann manifolds into the space of symmetric matrices by an isometric mapping, which enables us to devise a closed-form solution for updating a Grassmann dictionary, atom by atom. Furthermore, to handle non-linearity in data, we propose a kernelised version of the dictionary learning algorithm. Experiments on several classification tasks (face recognition, action recognition, dynamic texture classification) show that the proposed approach achieves considerable improvements in discrimination accuracy, in comparison to state-of-the-art methods such as kernelised Affine Hull Method and graph-embedding Grassmann discriminant analysis.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
ISSN:1550-5499
DOI:10.1109/ICCV.2013.387