Efficient Knowledge Distillation for RNN-Transducer Models

Knowledge Distillation is an effective method of transferring knowledge from a large model to a smaller model. Distillation can be viewed as a type of model compression, and has played an important role for on-device ASR applications. In this paper, we develop a distillation method for RNN-Transduce...

Full description

Saved in:
Bibliographic Details
Published inICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) pp. 5639 - 5643
Main Authors Panchapagesan, Sankaran, Park, Daniel S., Chiu, Chung-Cheng, Shangguan, Yuan, Liang, Qiao, Gruenstein, Alexander
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Knowledge Distillation is an effective method of transferring knowledge from a large model to a smaller model. Distillation can be viewed as a type of model compression, and has played an important role for on-device ASR applications. In this paper, we develop a distillation method for RNN-Transducer (RNN-T) models, a popular end-to-end neural network architecture for streaming speech recognition. Our proposed distillation loss is simple and efficient, and uses only the "y" and "blank" posterior probabilities from the RNN-T output probability lattice. We study the effectiveness of the proposed approach in improving the accuracy of sparse RNN-T models obtained by gradually pruning a larger uncompressed model, which also serves as the teacher during distillation. With distillation of 60% and 90% sparse multi-domain RNN-T models, we obtain WER reductions of 4.3% and 12.1% respectively, on a noisy FarField eval set. We also present results of experiments on LibriSpeech, where the introduction of the distillation loss yields a 4.8% relative WER reduction on the test-other dataset for a small Conformer model.
ISSN:2379-190X
DOI:10.1109/ICASSP39728.2021.9413905