Immediate Biomechanical Effects of Providing Adaptive Assistance with an Ankle Exoskeleton in Individuals After Stroke

Recent studies on ankle exoskeletons have shown the feasibility of this technology for post-stroke gait rehabilitation. The main contribution of the present work is a comprehensive experimental analysis and protocol that focused on evaluating a wide range of biomechanical, usability and users'...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the ... IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics pp. 1 - 7
Main Authors De Miguel-Fernandez, Jesus, Pescatore, Camille, Mesa-Garrido, Alba, Rikhof, Cindy, Prinsen, Erik, Font-Llagunes, Josep M., Lobo-Prat, Joan
Format Conference Proceeding
LanguageEnglish
Published IEEE 21.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Recent studies on ankle exoskeletons have shown the feasibility of this technology for post-stroke gait rehabilitation. The main contribution of the present work is a comprehensive experimental analysis and protocol that focused on evaluating a wide range of biomechanical, usability and users' perception metrics under three different walking conditions: without exoskeleton, with an ankle exoskeleton unpowered, and with an ankle exoskeleton powered. To carry out this study, we developed the ABLE-S exoskeleton that can provide time-adapted ankle plantarflexion and dorsiflexion assistance. Tests with five participants with chronic stroke showed that walking with the ABLE-S exoskeleton significantly corrected foot drop by 25 % while reducing hip compensatory movements by 21 %. Furthermore, asymmetrical spatial gait patterns were significantly reduced by 51 % together with a significant increase in the average foot tilting angle at heel strike by 349 %. The total time to don, doff and set-up the device was of 7.86 ± 2.90 minutes. Finally, 80 % of the participants indicated that they were satisfied with their walking performance while wearing the exoskeleton, and 60 % would use the device for community ambulation. The results of this study add to the existing body of evidence supporting that ankle exoskeletons can improve gait biomechanics for post-stroke individuals.
ISSN:2155-1782
DOI:10.1109/BioRob52689.2022.9925441