CoSPARSE: A Software and Hardware Reconfigurable SpMV Framework for Graph Analytics

Sparse matrix-vector multiplication (SpMV) is a critical building block for iterative graph analytics algorithms. Typically, such algorithms have a varying active vertex set across iterations. This variability has been used to improve performance by either dynamically switching algorithms between it...

Full description

Saved in:
Bibliographic Details
Published in2021 58th ACM/IEEE Design Automation Conference (DAC) pp. 949 - 954
Main Authors Feng, Siying, Sun, Jiawen, Pal, Subhankar, He, Xin, Kaszyk, Kuba, Park, Dong-hyeon, Morton, Magnus, Mudge, Trevor, Cole, Murray, O'Boyle, Michael, Chakrabarti, Chaitali, Dreslinski, Ronald
Format Conference Proceeding
LanguageEnglish
Published IEEE 05.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Sparse matrix-vector multiplication (SpMV) is a critical building block for iterative graph analytics algorithms. Typically, such algorithms have a varying active vertex set across iterations. This variability has been used to improve performance by either dynamically switching algorithms between iterations (software) or designing custom accelerators (hardware) for graph analytics algorithms. In this work, we propose a novel framework, CoSPARSE, that employs hardware and software reconfiguration as a synergistic solution to accelerate SpMV-based graph analytics algorithms. Building on previously proposed general-purpose reconfigurable hardware, we implement CoSPARSE as a software layer, abstracting the hardware as a specialized SpMV accelerator. CoSPARSE dynamically selects software and hardware configurations for each iteration and achieves a maximum speedup of 2.0 × compared to the naïve implementation with no reconfiguration. Across a suite of graph algorithms, CoSPARSE outperforms a state-of-the-art shared memory framework, Ligra, on a Xeon CPU with up to 3.51 × better performance and 877 × better energy efficiency.
DOI:10.1109/DAC18074.2021.9586114