Extracting Opinion Targets from Environmental Web Coverage and Social Media Streams

Policy makers and environmental organizations have a keen interest in awareness building and the evolution of stakeholder opinions on environmental issues. Mere polarity detection, as provided by many existing methods, does not suffice to understand the emergence of collective awareness. Methods for...

Full description

Saved in:
Bibliographic Details
Published in2016 49th Hawaii International Conference on System Sciences (HICSS) pp. 1040 - 1048
Main Authors Weichselbraun, Albert, Scharl, Arno, Gindl, Stefan
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 01.01.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Policy makers and environmental organizations have a keen interest in awareness building and the evolution of stakeholder opinions on environmental issues. Mere polarity detection, as provided by many existing methods, does not suffice to understand the emergence of collective awareness. Methods for extracting affective knowledge should be able to pinpoint opinion targets within a thread. Opinion target extraction provides a more accurate and fine-grained identification of opinions expressed in online media. This paper compares two different approaches for identifying potential opinion targets and applies them to comments from the YouTube video sharing platform. The first approach is based on statistical keyword analysis in conjunction with sentiment classification on the sentence level. The second approach uses dependency parsing to pinpoint the target of an opinionated term. A case study based on YouTube postings applies the developed methods and measures their ability to handle noisy input data from social media streams.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
ISSN:1530-1605
2572-6862
1530-1605
DOI:10.1109/HICSS.2016.133