A Virtual Inertia Control Strategy of Interlinking Converters in Islanded Hybrid AC/DC Microgrid
In an islanded hybrid AC/DC microgrid, the existing intermittent distributed generations (DGs) and local loads variation frequently cause power fluctuation. And the DC bus voltage is sensitive to it. A virtual inertia control strategy of interlinking converters (ILCs) in an islanded hybrid microgrid...
Saved in:
Published in | 2019 IEEE Energy Conversion Congress and Exposition (ECCE) pp. 6301 - 6308 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In an islanded hybrid AC/DC microgrid, the existing intermittent distributed generations (DGs) and local loads variation frequently cause power fluctuation. And the DC bus voltage is sensitive to it. A virtual inertia control strategy of interlinking converters (ILCs) in an islanded hybrid microgrid is proposed in this paper, which restrains the DC bus voltage fluctuation and enhances the inertia of the hybrid microgrid. Traditional droop control methods of ILCs mostly only focus on power sharing. The proposed control strategy can not only maintain proportional power distribution between DC and AC subgrids, but also regulate the DC bus voltage directly. It can improve microgrid stability during DC-side loading transitions or distributed energy fluctuations. Moreover, no additional energy storage or inverters are required in a cost-effective manner. The validity of the proposed control method is verified by offline time-domain simulation in MATLAB/Simulink and real-time experiment in OPAL-RT digital platform. |
---|---|
ISSN: | 2329-3748 |
DOI: | 10.1109/ECCE.2019.8912225 |