VideoMem: Constructing, Analyzing, Predicting Short-Term and Long-Term Video Memorability
Humans share a strong tendency to memorize/forget some of the visual information they encounter. This paper focuses on understanding the intrinsic memorability of visual content. To address this challenge, we introduce a large scale dataset (VideoMem) composed of 10,000 videos with memorability scor...
Saved in:
Published in | 2019 IEEE/CVF International Conference on Computer Vision (ICCV) pp. 2531 - 2540 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Humans share a strong tendency to memorize/forget some of the visual information they encounter. This paper focuses on understanding the intrinsic memorability of visual content. To address this challenge, we introduce a large scale dataset (VideoMem) composed of 10,000 videos with memorability scores. In contrast to previous work on image memorability - where memorability was measured a few minutes after memorization - memory performance is measured twice: a few minutes and again 24-72 hours after memorization. Hence, the dataset comes with short-term and long-term memorability annotations. After an in-depth analysis of the dataset, we investigate various deep neural network-based models for the prediction of video memorability. Our best model using a ranking loss achieves a Spearman's rank correlation of 0.494 (respectively 0.256) for short-term (resp. long-term) memorability prediction, while our model with attention mechanism provides insights of what makes a content memorable. The VideoMem dataset with pre-extracted features is publicly available. |
---|---|
ISSN: | 2380-7504 |
DOI: | 10.1109/ICCV.2019.00262 |